Integraal van $$$9 \sqrt{2} t^{16}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int 9 \sqrt{2} t^{16}\, dt$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=9 \sqrt{2}$$$ en $$$f{\left(t \right)} = t^{16}$$$:
$${\color{red}{\int{9 \sqrt{2} t^{16} d t}}} = {\color{red}{\left(9 \sqrt{2} \int{t^{16} d t}\right)}}$$
Pas de machtsregel $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=16$$$:
$$9 \sqrt{2} {\color{red}{\int{t^{16} d t}}}=9 \sqrt{2} {\color{red}{\frac{t^{1 + 16}}{1 + 16}}}=9 \sqrt{2} {\color{red}{\left(\frac{t^{17}}{17}\right)}}$$
Dus,
$$\int{9 \sqrt{2} t^{16} d t} = \frac{9 \sqrt{2} t^{17}}{17}$$
Voeg de integratieconstante toe:
$$\int{9 \sqrt{2} t^{16} d t} = \frac{9 \sqrt{2} t^{17}}{17}+C$$
Antwoord
$$$\int 9 \sqrt{2} t^{16}\, dt = \frac{9 \sqrt{2} t^{17}}{17} + C$$$A