Integraal van $$$\frac{\ln\left(- x\right)}{2}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{\ln\left(- x\right)}{2}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(x \right)} = \ln{\left(- x \right)}$$$:
$${\color{red}{\int{\frac{\ln{\left(- x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\ln{\left(- x \right)} d x}}{2}\right)}}$$
Zij $$$u=- x$$$.
Dan $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = - du$$$.
De integraal kan worden herschreven als
$$\frac{{\color{red}{\int{\ln{\left(- x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}}{2}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=-1$$$ en $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}}{2}$$
Voor de integraal $$$\int{\ln{\left(u \right)} d u}$$$, gebruik partiële integratie $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.
Zij $$$\operatorname{g}=\ln{\left(u \right)}$$$ en $$$\operatorname{dv}=du$$$.
Dan $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{1 d u}=u$$$ (de stappen zijn te zien »).
Dus,
$$- \frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{2}=- \frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{2}=- \frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{2}$$
Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:
$$- \frac{u \ln{\left(u \right)}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{u \ln{\left(u \right)}}{2} + \frac{{\color{red}{u}}}{2}$$
We herinneren eraan dat $$$u=- x$$$:
$$\frac{{\color{red}{u}}}{2} - \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{2} = \frac{{\color{red}{\left(- x\right)}}}{2} - \frac{{\color{red}{\left(- x\right)}} \ln{\left({\color{red}{\left(- x\right)}} \right)}}{2}$$
Dus,
$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \ln{\left(- x \right)}}{2} - \frac{x}{2}$$
Vereenvoudig:
$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \left(\ln{\left(- x \right)} - 1\right)}{2}$$
Voeg de integratieconstante toe:
$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \left(\ln{\left(- x \right)} - 1\right)}{2}+C$$
Antwoord
$$$\int \frac{\ln\left(- x\right)}{2}\, dx = \frac{x \left(\ln\left(- x\right) - 1\right)}{2} + C$$$A