Integraal van $$$\frac{\ln\left(- x\right)}{2}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{\ln\left(- x\right)}{2}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{\ln\left(- x\right)}{2}\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(x \right)} = \ln{\left(- x \right)}$$$:

$${\color{red}{\int{\frac{\ln{\left(- x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\ln{\left(- x \right)} d x}}{2}\right)}}$$

Zij $$$u=- x$$$.

Dan $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = - du$$$.

De integraal kan worden herschreven als

$$\frac{{\color{red}{\int{\ln{\left(- x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}}{2}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=-1$$$ en $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}}{2}$$

Voor de integraal $$$\int{\ln{\left(u \right)} d u}$$$, gebruik partiële integratie $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.

Zij $$$\operatorname{g}=\ln{\left(u \right)}$$$ en $$$\operatorname{dv}=du$$$.

Dan $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{1 d u}=u$$$ (de stappen zijn te zien »).

Dus,

$$- \frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{2}=- \frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{2}=- \frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{2}$$

Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:

$$- \frac{u \ln{\left(u \right)}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{u \ln{\left(u \right)}}{2} + \frac{{\color{red}{u}}}{2}$$

We herinneren eraan dat $$$u=- x$$$:

$$\frac{{\color{red}{u}}}{2} - \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{2} = \frac{{\color{red}{\left(- x\right)}}}{2} - \frac{{\color{red}{\left(- x\right)}} \ln{\left({\color{red}{\left(- x\right)}} \right)}}{2}$$

Dus,

$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \ln{\left(- x \right)}}{2} - \frac{x}{2}$$

Vereenvoudig:

$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \left(\ln{\left(- x \right)} - 1\right)}{2}$$

Voeg de integratieconstante toe:

$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \left(\ln{\left(- x \right)} - 1\right)}{2}+C$$

Antwoord

$$$\int \frac{\ln\left(- x\right)}{2}\, dx = \frac{x \left(\ln\left(- x\right) - 1\right)}{2} + C$$$A


Please try a new game Rotatly