Integraal van $$$\frac{1}{x \ln^{3}\left(x\right)}$$$ met betrekking tot $$$t$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt$$$.
Oplossing
Pas de constantenregel $$$\int c\, dt = c t$$$ toe met $$$c=\frac{1}{x \ln{\left(x \right)}^{3}}$$$:
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t}}} = {\color{red}{\frac{t}{x \ln{\left(x \right)}^{3}}}}$$
Dus,
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}$$
Voeg de integratieconstante toe:
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}+C$$
Antwoord
$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt = \frac{t}{x \ln^{3}\left(x\right)} + C$$$A