Integraal van $$$_1 x^{3} - 1$$$ met betrekking tot $$$x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \left(_1 x^{3} - 1\right)\, dx$$$.
Oplossing
Integreer termgewijs:
$${\color{red}{\int{\left(_1 x^{3} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{_1 x^{3} d x}\right)}}$$
Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:
$$\int{_1 x^{3} d x} - {\color{red}{\int{1 d x}}} = \int{_1 x^{3} d x} - {\color{red}{x}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=_1$$$ en $$$f{\left(x \right)} = x^{3}$$$:
$$- x + {\color{red}{\int{_1 x^{3} d x}}} = - x + {\color{red}{_1 \int{x^{3} d x}}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=3$$$:
$$_1 {\color{red}{\int{x^{3} d x}}} - x=_1 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}} - x=_1 {\color{red}{\left(\frac{x^{4}}{4}\right)}} - x$$
Dus,
$$\int{\left(_1 x^{3} - 1\right)d x} = \frac{_1 x^{4}}{4} - x$$
Voeg de integratieconstante toe:
$$\int{\left(_1 x^{3} - 1\right)d x} = \frac{_1 x^{4}}{4} - x+C$$
Antwoord
$$$\int \left(_1 x^{3} - 1\right)\, dx = \left(\frac{_1 x^{4}}{4} - x\right) + C$$$A