Integraal van $$$\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{\pi}{40}$$$ en $$$f{\left(x \right)} = \sin{\left(x \right)} \cos{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x}}} = {\color{red}{\left(\frac{\pi \int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}{40}\right)}}$$

Zij $$$u=\sin{\left(x \right)}$$$.

Dan $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\cos{\left(x \right)} dx = du$$$.

De integraal wordt

$$\frac{\pi {\color{red}{\int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}}}{40} = \frac{\pi {\color{red}{\int{u d u}}}}{40}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:

$$\frac{\pi {\color{red}{\int{u d u}}}}{40}=\frac{\pi {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{40}=\frac{\pi {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{40}$$

We herinneren eraan dat $$$u=\sin{\left(x \right)}$$$:

$$\frac{\pi {\color{red}{u}}^{2}}{80} = \frac{\pi {\color{red}{\sin{\left(x \right)}}}^{2}}{80}$$

Dus,

$$\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x} = \frac{\pi \sin^{2}{\left(x \right)}}{80}$$

Voeg de integratieconstante toe:

$$\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x} = \frac{\pi \sin^{2}{\left(x \right)}}{80}+C$$

Antwoord

$$$\int \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}\, dx = \frac{\pi \sin^{2}{\left(x \right)}}{80} + C$$$A


Please try a new game Rotatly