Integraal van $$$\sqrt{x^{2} - 6}$$$

De calculator zal de integraal/primitieve functie van $$$\sqrt{x^{2} - 6}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \sqrt{x^{2} - 6}\, dx$$$.

Oplossing

Zij $$$x=\sqrt{6} \cosh{\left(u \right)}$$$.

Dan $$$dx=\left(\sqrt{6} \cosh{\left(u \right)}\right)^{\prime }du = \sqrt{6} \sinh{\left(u \right)} du$$$ (zie » voor de stappen).

Bovendien volgt dat $$$u=\operatorname{acosh}{\left(\frac{\sqrt{6} x}{6} \right)}$$$.

Dus,

$$$\sqrt{x^{2} - 6} = \sqrt{6 \cosh^{2}{\left( u \right)} - 6}$$$

Gebruik de identiteit $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:

$$$\sqrt{6 \cosh^{2}{\left( u \right)} - 6}=\sqrt{6} \sqrt{\cosh^{2}{\left( u \right)} - 1}=\sqrt{6} \sqrt{\sinh^{2}{\left( u \right)}}$$$

Aangenomen dat $$$\sinh{\left( u \right)} \ge 0$$$, verkrijgen we het volgende:

$$$\sqrt{6} \sqrt{\sinh^{2}{\left( u \right)}} = \sqrt{6} \sinh{\left( u \right)}$$$

Dus,

$${\color{red}{\int{\sqrt{x^{2} - 6} d x}}} = {\color{red}{\int{6 \sinh^{2}{\left(u \right)} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=6$$$ en $$$f{\left(u \right)} = \sinh^{2}{\left(u \right)}$$$:

$${\color{red}{\int{6 \sinh^{2}{\left(u \right)} d u}}} = {\color{red}{\left(6 \int{\sinh^{2}{\left(u \right)} d u}\right)}}$$

Pas de machtsreductieformule $$$\sinh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} - \frac{1}{2}$$$ toe met $$$\alpha= u $$$:

$$6 {\color{red}{\int{\sinh^{2}{\left(u \right)} d u}}} = 6 {\color{red}{\int{\left(\frac{\cosh{\left(2 u \right)}}{2} - \frac{1}{2}\right)d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \cosh{\left(2 u \right)} - 1$$$:

$$6 {\color{red}{\int{\left(\frac{\cosh{\left(2 u \right)}}{2} - \frac{1}{2}\right)d u}}} = 6 {\color{red}{\left(\frac{\int{\left(\cosh{\left(2 u \right)} - 1\right)d u}}{2}\right)}}$$

Integreer termgewijs:

$$3 {\color{red}{\int{\left(\cosh{\left(2 u \right)} - 1\right)d u}}} = 3 {\color{red}{\left(- \int{1 d u} + \int{\cosh{\left(2 u \right)} d u}\right)}}$$

Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:

$$3 \int{\cosh{\left(2 u \right)} d u} - 3 {\color{red}{\int{1 d u}}} = 3 \int{\cosh{\left(2 u \right)} d u} - 3 {\color{red}{u}}$$

Zij $$$v=2 u$$$.

Dan $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (de stappen zijn te zien »), en dan geldt dat $$$du = \frac{dv}{2}$$$.

Dus,

$$- 3 u + 3 {\color{red}{\int{\cosh{\left(2 u \right)} d u}}} = - 3 u + 3 {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(v \right)} = \cosh{\left(v \right)}$$$:

$$- 3 u + 3 {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}} = - 3 u + 3 {\color{red}{\left(\frac{\int{\cosh{\left(v \right)} d v}}{2}\right)}}$$

De integraal van de cosinus hyperbolicus is $$$\int{\cosh{\left(v \right)} d v} = \sinh{\left(v \right)}$$$:

$$- 3 u + \frac{3 {\color{red}{\int{\cosh{\left(v \right)} d v}}}}{2} = - 3 u + \frac{3 {\color{red}{\sinh{\left(v \right)}}}}{2}$$

We herinneren eraan dat $$$v=2 u$$$:

$$- 3 u + \frac{3 \sinh{\left({\color{red}{v}} \right)}}{2} = - 3 u + \frac{3 \sinh{\left({\color{red}{\left(2 u\right)}} \right)}}{2}$$

We herinneren eraan dat $$$u=\operatorname{acosh}{\left(\frac{\sqrt{6} x}{6} \right)}$$$:

$$\frac{3 \sinh{\left(2 {\color{red}{u}} \right)}}{2} - 3 {\color{red}{u}} = \frac{3 \sinh{\left(2 {\color{red}{\operatorname{acosh}{\left(\frac{\sqrt{6} x}{6} \right)}}} \right)}}{2} - 3 {\color{red}{\operatorname{acosh}{\left(\frac{\sqrt{6} x}{6} \right)}}}$$

Dus,

$$\int{\sqrt{x^{2} - 6} d x} = \frac{3 \sinh{\left(2 \operatorname{acosh}{\left(\frac{\sqrt{6} x}{6} \right)} \right)}}{2} - 3 \operatorname{acosh}{\left(\frac{\sqrt{6} x}{6} \right)}$$

Gebruik de formules $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$ om de uitdrukking te vereenvoudigen:

$$\int{\sqrt{x^{2} - 6} d x} = \frac{\sqrt{6} x \sqrt{\frac{\sqrt{6} x}{6} - 1} \sqrt{\frac{\sqrt{6} x}{6} + 1}}{2} - 3 \operatorname{acosh}{\left(\frac{\sqrt{6} x}{6} \right)}$$

Vereenvoudig verder:

$$\int{\sqrt{x^{2} - 6} d x} = \frac{\sqrt{6} x \sqrt{\sqrt{6} x - 6} \sqrt{\sqrt{6} x + 6}}{12} - 3 \operatorname{acosh}{\left(\frac{\sqrt{6} x}{6} \right)}$$

Voeg de integratieconstante toe:

$$\int{\sqrt{x^{2} - 6} d x} = \frac{\sqrt{6} x \sqrt{\sqrt{6} x - 6} \sqrt{\sqrt{6} x + 6}}{12} - 3 \operatorname{acosh}{\left(\frac{\sqrt{6} x}{6} \right)}+C$$

Antwoord

$$$\int \sqrt{x^{2} - 6}\, dx = \left(\frac{\sqrt{6} x \sqrt{\sqrt{6} x - 6} \sqrt{\sqrt{6} x + 6}}{12} - 3 \operatorname{acosh}{\left(\frac{\sqrt{6} x}{6} \right)}\right) + C$$$A


Please try a new game Rotatly