Integraal van $$$\operatorname{sech}^{2}{\left(x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \operatorname{sech}^{2}{\left(x \right)}\, dx$$$.
Oplossing
De integraal van $$$\operatorname{sech}^{2}{\left(x \right)}$$$ is $$$\int{\operatorname{sech}^{2}{\left(x \right)} d x} = \tanh{\left(x \right)}$$$:
$${\color{red}{\int{\operatorname{sech}^{2}{\left(x \right)} d x}}} = {\color{red}{\tanh{\left(x \right)}}}$$
Dus,
$$\int{\operatorname{sech}^{2}{\left(x \right)} d x} = \tanh{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\operatorname{sech}^{2}{\left(x \right)} d x} = \tanh{\left(x \right)}+C$$
Antwoord
$$$\int \operatorname{sech}^{2}{\left(x \right)}\, dx = \tanh{\left(x \right)} + C$$$A