Integraal van $$$\frac{\ln^{2}\left(x^{2}\right)}{x}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{\ln^{2}\left(x^{2}\right)}{x}\, dx$$$.
Oplossing
De invoer is herschreven: $$$\int{\frac{\ln{\left(x^{2} \right)}^{2}}{x} d x}=\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x}$$$.
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=4$$$ en $$$f{\left(x \right)} = \frac{\ln{\left(x \right)}^{2}}{x}$$$:
$${\color{red}{\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x}}} = {\color{red}{\left(4 \int{\frac{\ln{\left(x \right)}^{2}}{x} d x}\right)}}$$
Zij $$$u=\ln{\left(x \right)}$$$.
Dan $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (de stappen zijn te zien »), en dan geldt dat $$$\frac{dx}{x} = du$$$.
Dus,
$$4 {\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d x}}} = 4 {\color{red}{\int{u^{2} d u}}}$$
Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:
$$4 {\color{red}{\int{u^{2} d u}}}=4 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=4 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
We herinneren eraan dat $$$u=\ln{\left(x \right)}$$$:
$$\frac{4 {\color{red}{u}}^{3}}{3} = \frac{4 {\color{red}{\ln{\left(x \right)}}}^{3}}{3}$$
Dus,
$$\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x} = \frac{4 \ln{\left(x \right)}^{3}}{3}$$
Voeg de integratieconstante toe:
$$\int{\frac{4 \ln{\left(x \right)}^{2}}{x} d x} = \frac{4 \ln{\left(x \right)}^{3}}{3}+C$$
Antwoord
$$$\int \frac{\ln^{2}\left(x^{2}\right)}{x}\, dx = \frac{4 \ln^{3}\left(x\right)}{3} + C$$$A