Integraal van $$$\frac{e^{6}}{x^{3}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{e^{6}}{x^{3}}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=e^{6}$$$ en $$$f{\left(x \right)} = \frac{1}{x^{3}}$$$:
$${\color{red}{\int{\frac{e^{6}}{x^{3}} d x}}} = {\color{red}{e^{6} \int{\frac{1}{x^{3}} d x}}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=-3$$$:
$$e^{6} {\color{red}{\int{\frac{1}{x^{3}} d x}}}=e^{6} {\color{red}{\int{x^{-3} d x}}}=e^{6} {\color{red}{\frac{x^{-3 + 1}}{-3 + 1}}}=e^{6} {\color{red}{\left(- \frac{x^{-2}}{2}\right)}}=e^{6} {\color{red}{\left(- \frac{1}{2 x^{2}}\right)}}$$
Dus,
$$\int{\frac{e^{6}}{x^{3}} d x} = - \frac{e^{6}}{2 x^{2}}$$
Voeg de integratieconstante toe:
$$\int{\frac{e^{6}}{x^{3}} d x} = - \frac{e^{6}}{2 x^{2}}+C$$
Antwoord
$$$\int \frac{e^{6}}{x^{3}}\, dx = - \frac{e^{6}}{2 x^{2}} + C$$$A