Integraal van $$$e \left(x - \frac{1}{x}\right)$$$

De calculator zal de integraal/primitieve functie van $$$e \left(x - \frac{1}{x}\right)$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int e \left(x - \frac{1}{x}\right)\, dx$$$.

Oplossing

Expand the expression:

$${\color{red}{\int{e \left(x - \frac{1}{x}\right) d x}}} = {\color{red}{\int{\left(e x - \frac{e}{x}\right)d x}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(e x - \frac{e}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{e}{x} d x} + \int{e x d x}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=e$$$ en $$$f{\left(x \right)} = x$$$:

$$- \int{\frac{e}{x} d x} + {\color{red}{\int{e x d x}}} = - \int{\frac{e}{x} d x} + {\color{red}{e \int{x d x}}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:

$$- \int{\frac{e}{x} d x} + e {\color{red}{\int{x d x}}}=- \int{\frac{e}{x} d x} + e {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{\frac{e}{x} d x} + e {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=e$$$ en $$$f{\left(x \right)} = \frac{1}{x}$$$:

$$\frac{e x^{2}}{2} - {\color{red}{\int{\frac{e}{x} d x}}} = \frac{e x^{2}}{2} - {\color{red}{e \int{\frac{1}{x} d x}}}$$

De integraal van $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$\frac{e x^{2}}{2} - e {\color{red}{\int{\frac{1}{x} d x}}} = \frac{e x^{2}}{2} - e {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Dus,

$$\int{e \left(x - \frac{1}{x}\right) d x} = \frac{e x^{2}}{2} - e \ln{\left(\left|{x}\right| \right)}$$

Vereenvoudig:

$$\int{e \left(x - \frac{1}{x}\right) d x} = \frac{e \left(x^{2} - 2 \ln{\left(\left|{x}\right| \right)}\right)}{2}$$

Voeg de integratieconstante toe:

$$\int{e \left(x - \frac{1}{x}\right) d x} = \frac{e \left(x^{2} - 2 \ln{\left(\left|{x}\right| \right)}\right)}{2}+C$$

Antwoord

$$$\int e \left(x - \frac{1}{x}\right)\, dx = \frac{e \left(x^{2} - 2 \ln\left(\left|{x}\right|\right)\right)}{2} + C$$$A


Please try a new game Rotatly