Integraal van $$$\frac{1}{2 \left(4 - x^{2}\right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{1}{2 \left(4 - x^{2}\right)}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(x \right)} = \frac{1}{4 - x^{2}}$$$:
$${\color{red}{\int{\frac{1}{2 \left(4 - x^{2}\right)} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{4 - x^{2}} d x}}{2}\right)}}$$
Voer een ontbinding in partiële breuken uit (stappen zijn te zien »):
$$\frac{{\color{red}{\int{\frac{1}{4 - x^{2}} d x}}}}{2} = \frac{{\color{red}{\int{\left(\frac{1}{4 \left(x + 2\right)} - \frac{1}{4 \left(x - 2\right)}\right)d x}}}}{2}$$
Integreer termgewijs:
$$\frac{{\color{red}{\int{\left(\frac{1}{4 \left(x + 2\right)} - \frac{1}{4 \left(x - 2\right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{1}{4 \left(x - 2\right)} d x} + \int{\frac{1}{4 \left(x + 2\right)} d x}\right)}}}{2}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{4}$$$ en $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:
$$\frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\int{\frac{1}{4 \left(x - 2\right)} d x}}}}{2} = \frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{x - 2} d x}}{4}\right)}}}{2}$$
Zij $$$u=x - 2$$$.
Dan $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.
Dus,
$$\frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\int{\frac{1}{x - 2} d x}}}}{8} = \frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}$$
De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8} = \frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$
We herinneren eraan dat $$$u=x - 2$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} + \frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}}{8} + \frac{\int{\frac{1}{4 \left(x + 2\right)} d x}}{2}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{4}$$$ en $$$f{\left(x \right)} = \frac{1}{x + 2}$$$:
$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{4 \left(x + 2\right)} d x}}}}{2} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{x + 2} d x}}{4}\right)}}}{2}$$
Zij $$$u=x + 2$$$.
Dan $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.
Dus,
$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{x + 2} d x}}}}{8} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}$$
De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$
We herinneren eraan dat $$$u=x + 2$$$:
$$- \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{\ln{\left(\left|{{\color{red}{\left(x + 2\right)}}}\right| \right)}}{8}$$
Dus,
$$\int{\frac{1}{2 \left(4 - x^{2}\right)} d x} = - \frac{\ln{\left(\left|{x - 2}\right| \right)}}{8} + \frac{\ln{\left(\left|{x + 2}\right| \right)}}{8}$$
Vereenvoudig:
$$\int{\frac{1}{2 \left(4 - x^{2}\right)} d x} = \frac{- \ln{\left(\left|{x - 2}\right| \right)} + \ln{\left(\left|{x + 2}\right| \right)}}{8}$$
Voeg de integratieconstante toe:
$$\int{\frac{1}{2 \left(4 - x^{2}\right)} d x} = \frac{- \ln{\left(\left|{x - 2}\right| \right)} + \ln{\left(\left|{x + 2}\right| \right)}}{8}+C$$
Antwoord
$$$\int \frac{1}{2 \left(4 - x^{2}\right)}\, dx = \frac{- \ln\left(\left|{x - 2}\right|\right) + \ln\left(\left|{x + 2}\right|\right)}{8} + C$$$A