Integraal van $$$\frac{2 x^{3} - 2}{x - 2}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{2 x^{3} - 2}{x - 2}\, dx$$$.
Oplossing
Vereenvoudig de integraand:
$${\color{red}{\int{\frac{2 x^{3} - 2}{x - 2} d x}}} = {\color{red}{\int{\frac{2 \left(x^{3} - 1\right)}{x - 2} d x}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=2$$$ en $$$f{\left(x \right)} = \frac{x^{3} - 1}{x - 2}$$$:
$${\color{red}{\int{\frac{2 \left(x^{3} - 1\right)}{x - 2} d x}}} = {\color{red}{\left(2 \int{\frac{x^{3} - 1}{x - 2} d x}\right)}}$$
Aangezien de graad van de teller niet kleiner is dan die van de noemer, voer een staartdeling van polynomen uit (stappen zijn te zien »):
$$2 {\color{red}{\int{\frac{x^{3} - 1}{x - 2} d x}}} = 2 {\color{red}{\int{\left(x^{2} + 2 x + 4 + \frac{7}{x - 2}\right)d x}}}$$
Integreer termgewijs:
$$2 {\color{red}{\int{\left(x^{2} + 2 x + 4 + \frac{7}{x - 2}\right)d x}}} = 2 {\color{red}{\left(\int{4 d x} + \int{2 x d x} + \int{x^{2} d x} + \int{\frac{7}{x - 2} d x}\right)}}$$
Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=4$$$:
$$2 \int{2 x d x} + 2 \int{x^{2} d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\int{4 d x}}} = 2 \int{2 x d x} + 2 \int{x^{2} d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\left(4 x\right)}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:
$$8 x + 2 \int{2 x d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\int{x^{2} d x}}}=8 x + 2 \int{2 x d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=8 x + 2 \int{2 x d x} + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=2$$$ en $$$f{\left(x \right)} = x$$$:
$$\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\int{2 x d x}}} = \frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 2 {\color{red}{\left(2 \int{x d x}\right)}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:
$$\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 4 {\color{red}{\int{x d x}}}=\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 4 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{2 x^{3}}{3} + 8 x + 2 \int{\frac{7}{x - 2} d x} + 4 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=7$$$ en $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:
$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 2 {\color{red}{\int{\frac{7}{x - 2} d x}}} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 2 {\color{red}{\left(7 \int{\frac{1}{x - 2} d x}\right)}}$$
Zij $$$u=x - 2$$$.
Dan $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.
De integraal kan worden herschreven als
$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\int{\frac{1}{x - 2} d x}}} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\int{\frac{1}{u} d u}}}$$
De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
We herinneren eraan dat $$$u=x - 2$$$:
$$\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}$$
Dus,
$$\int{\frac{2 x^{3} - 2}{x - 2} d x} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{x - 2}\right| \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{2 x^{3} - 2}{x - 2} d x} = \frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln{\left(\left|{x - 2}\right| \right)}+C$$
Antwoord
$$$\int \frac{2 x^{3} - 2}{x - 2}\, dx = \left(\frac{2 x^{3}}{3} + 2 x^{2} + 8 x + 14 \ln\left(\left|{x - 2}\right|\right)\right) + C$$$A