Integraal van $$$\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx$$$.

Oplossing

Expand the expression:

$${\color{red}{\int{\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{2}{\cos^{2}{\left(x \right)}}\right)d x}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{2}{\cos^{2}{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + \int{\frac{2}{\cos^{2}{\left(x \right)}} d x}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=2$$$ en $$$f{\left(x \right)} = \frac{1}{\cos^{2}{\left(x \right)}}$$$:

$$- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + {\color{red}{\int{\frac{2}{\cos^{2}{\left(x \right)}} d x}}} = - \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + {\color{red}{\left(2 \int{\frac{1}{\cos^{2}{\left(x \right)}} d x}\right)}}$$

Herschrijf de integraand in termen van secans:

$$- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}} = - \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}$$

De integraal van $$$\sec^{2}{\left(x \right)}$$$ is $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:

$$- \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = - \int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} + 2 {\color{red}{\tan{\left(x \right)}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=3$$$ en $$$f{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}$$$:

$$2 \tan{\left(x \right)} - {\color{red}{\int{\frac{3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = 2 \tan{\left(x \right)} - {\color{red}{\left(3 \int{\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}\right)}}$$

Zij $$$u=\cos{\left(x \right)}$$$.

Dan $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\sin{\left(x \right)} dx = - du$$$.

De integraal wordt

$$2 \tan{\left(x \right)} - 3 {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x}}} = 2 \tan{\left(x \right)} - 3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=-1$$$ en $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:

$$2 \tan{\left(x \right)} - 3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}} = 2 \tan{\left(x \right)} - 3 {\color{red}{\left(- \int{\frac{1}{u^{2}} d u}\right)}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=-2$$$:

$$2 \tan{\left(x \right)} + 3 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 \tan{\left(x \right)} + 3 {\color{red}{\int{u^{-2} d u}}}=2 \tan{\left(x \right)} + 3 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 \tan{\left(x \right)} + 3 {\color{red}{\left(- u^{-1}\right)}}=2 \tan{\left(x \right)} + 3 {\color{red}{\left(- \frac{1}{u}\right)}}$$

We herinneren eraan dat $$$u=\cos{\left(x \right)}$$$:

$$2 \tan{\left(x \right)} - 3 {\color{red}{u}}^{-1} = 2 \tan{\left(x \right)} - 3 {\color{red}{\cos{\left(x \right)}}}^{-1}$$

Dus,

$$\int{\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} = 2 \tan{\left(x \right)} - \frac{3}{\cos{\left(x \right)}}$$

Voeg de integratieconstante toe:

$$\int{\frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} d x} = 2 \tan{\left(x \right)} - \frac{3}{\cos{\left(x \right)}}+C$$

Antwoord

$$$\int \frac{2 - 3 \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx = \left(2 \tan{\left(x \right)} - \frac{3}{\cos{\left(x \right)}}\right) + C$$$A


Please try a new game Rotatly