Integraal van $$$2 \tan^{2}{\left(\theta \right)}$$$

De calculator zal de integraal/primitieve functie van $$$2 \tan^{2}{\left(\theta \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int 2 \tan^{2}{\left(\theta \right)}\, d\theta$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ toe met $$$c=2$$$ en $$$f{\left(\theta \right)} = \tan^{2}{\left(\theta \right)}$$$:

$${\color{red}{\int{2 \tan^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\left(2 \int{\tan^{2}{\left(\theta \right)} d \theta}\right)}}$$

Zij $$$u=\tan{\left(\theta \right)}$$$.

Dan $$$\theta=\operatorname{atan}{\left(u \right)}$$$ en $$$d\theta=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (de stappen zijn te zien »).

De integraal wordt

$$2 {\color{red}{\int{\tan^{2}{\left(\theta \right)} d \theta}}} = 2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$

Herschrijf en splits de breuk:

$$2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = 2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Integreer termgewijs:

$$2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:

$$- 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{u}}$$

De integraal van $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$2 u - 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 u - 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

We herinneren eraan dat $$$u=\tan{\left(\theta \right)}$$$:

$$- 2 \operatorname{atan}{\left({\color{red}{u}} \right)} + 2 {\color{red}{u}} = - 2 \operatorname{atan}{\left({\color{red}{\tan{\left(\theta \right)}}} \right)} + 2 {\color{red}{\tan{\left(\theta \right)}}}$$

Dus,

$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \tan{\left(\theta \right)} - 2 \operatorname{atan}{\left(\tan{\left(\theta \right)} \right)}$$

Vereenvoudig:

$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \left(- \theta + \tan{\left(\theta \right)}\right)$$

Voeg de integratieconstante toe:

$$\int{2 \tan^{2}{\left(\theta \right)} d \theta} = 2 \left(- \theta + \tan{\left(\theta \right)}\right)+C$$

Antwoord

$$$\int 2 \tan^{2}{\left(\theta \right)}\, d\theta = 2 \left(- \theta + \tan{\left(\theta \right)}\right) + C$$$A


Please try a new game Rotatly