Integraal van $$$\frac{\ln^{12}\left(x\right)}{x}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{\ln^{12}\left(x\right)}{x}\, dx$$$.
Oplossing
Zij $$$u=\ln{\left(x \right)}$$$.
Dan $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (de stappen zijn te zien »), en dan geldt dat $$$\frac{dx}{x} = du$$$.
Dus,
$${\color{red}{\int{\frac{\ln{\left(x \right)}^{12}}{x} d x}}} = {\color{red}{\int{u^{12} d u}}}$$
Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=12$$$:
$${\color{red}{\int{u^{12} d u}}}={\color{red}{\frac{u^{1 + 12}}{1 + 12}}}={\color{red}{\left(\frac{u^{13}}{13}\right)}}$$
We herinneren eraan dat $$$u=\ln{\left(x \right)}$$$:
$$\frac{{\color{red}{u}}^{13}}{13} = \frac{{\color{red}{\ln{\left(x \right)}}}^{13}}{13}$$
Dus,
$$\int{\frac{\ln{\left(x \right)}^{12}}{x} d x} = \frac{\ln{\left(x \right)}^{13}}{13}$$
Voeg de integratieconstante toe:
$$\int{\frac{\ln{\left(x \right)}^{12}}{x} d x} = \frac{\ln{\left(x \right)}^{13}}{13}+C$$
Antwoord
$$$\int \frac{\ln^{12}\left(x\right)}{x}\, dx = \frac{\ln^{13}\left(x\right)}{13} + C$$$A