Integraal van $$$n \left(n - 1\right)$$$

De calculator zal de integraal/primitieve functie van $$$n \left(n - 1\right)$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int n \left(n - 1\right)\, dn$$$.

Oplossing

Expand the expression:

$${\color{red}{\int{n \left(n - 1\right) d n}}} = {\color{red}{\int{\left(n^{2} - n\right)d n}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(n^{2} - n\right)d n}}} = {\color{red}{\left(- \int{n d n} + \int{n^{2} d n}\right)}}$$

Pas de machtsregel $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:

$$- \int{n d n} + {\color{red}{\int{n^{2} d n}}}=- \int{n d n} + {\color{red}{\frac{n^{1 + 2}}{1 + 2}}}=- \int{n d n} + {\color{red}{\left(\frac{n^{3}}{3}\right)}}$$

Pas de machtsregel $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:

$$\frac{n^{3}}{3} - {\color{red}{\int{n d n}}}=\frac{n^{3}}{3} - {\color{red}{\frac{n^{1 + 1}}{1 + 1}}}=\frac{n^{3}}{3} - {\color{red}{\left(\frac{n^{2}}{2}\right)}}$$

Dus,

$$\int{n \left(n - 1\right) d n} = \frac{n^{3}}{3} - \frac{n^{2}}{2}$$

Vereenvoudig:

$$\int{n \left(n - 1\right) d n} = \frac{n^{2} \left(2 n - 3\right)}{6}$$

Voeg de integratieconstante toe:

$$\int{n \left(n - 1\right) d n} = \frac{n^{2} \left(2 n - 3\right)}{6}+C$$

Antwoord

$$$\int n \left(n - 1\right)\, dn = \frac{n^{2} \left(2 n - 3\right)}{6} + C$$$A


Please try a new game Rotatly