Integraal van $$$9 x \cos{\left(x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int 9 x \cos{\left(x \right)}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=9$$$ en $$$f{\left(x \right)} = x \cos{\left(x \right)}$$$:
$${\color{red}{\int{9 x \cos{\left(x \right)} d x}}} = {\color{red}{\left(9 \int{x \cos{\left(x \right)} d x}\right)}}$$
Voor de integraal $$$\int{x \cos{\left(x \right)} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Zij $$$\operatorname{u}=x$$$ en $$$\operatorname{dv}=\cos{\left(x \right)} dx$$$.
Dan $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{\cos{\left(x \right)} d x}=\sin{\left(x \right)}$$$ (de stappen zijn te zien »).
Dus,
$$9 {\color{red}{\int{x \cos{\left(x \right)} d x}}}=9 {\color{red}{\left(x \cdot \sin{\left(x \right)}-\int{\sin{\left(x \right)} \cdot 1 d x}\right)}}=9 {\color{red}{\left(x \sin{\left(x \right)} - \int{\sin{\left(x \right)} d x}\right)}}$$
De integraal van de sinus is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$9 x \sin{\left(x \right)} - 9 {\color{red}{\int{\sin{\left(x \right)} d x}}} = 9 x \sin{\left(x \right)} - 9 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Dus,
$$\int{9 x \cos{\left(x \right)} d x} = 9 x \sin{\left(x \right)} + 9 \cos{\left(x \right)}$$
Vereenvoudig:
$$\int{9 x \cos{\left(x \right)} d x} = 9 \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right)$$
Voeg de integratieconstante toe:
$$\int{9 x \cos{\left(x \right)} d x} = 9 \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right)+C$$
Antwoord
$$$\int 9 x \cos{\left(x \right)}\, dx = 9 \left(x \sin{\left(x \right)} + \cos{\left(x \right)}\right) + C$$$A