Integraal van $$$2 x^{2} \left(2 x - 4\right)$$$

De calculator zal de integraal/primitieve functie van $$$2 x^{2} \left(2 x - 4\right)$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int 2 x^{2} \left(2 x - 4\right)\, dx$$$.

Oplossing

De invoer is herschreven: $$$\int{2 x^{2} \left(2 x - 4\right) d x}=\int{x^{2} \left(4 x - 8\right) d x}$$$.

Vereenvoudig de integraand:

$${\color{red}{\int{x^{2} \left(4 x - 8\right) d x}}} = {\color{red}{\int{4 x^{2} \left(x - 2\right) d x}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=4$$$ en $$$f{\left(x \right)} = x^{2} \left(x - 2\right)$$$:

$${\color{red}{\int{4 x^{2} \left(x - 2\right) d x}}} = {\color{red}{\left(4 \int{x^{2} \left(x - 2\right) d x}\right)}}$$

Expand the expression:

$$4 {\color{red}{\int{x^{2} \left(x - 2\right) d x}}} = 4 {\color{red}{\int{\left(x^{3} - 2 x^{2}\right)d x}}}$$

Integreer termgewijs:

$$4 {\color{red}{\int{\left(x^{3} - 2 x^{2}\right)d x}}} = 4 {\color{red}{\left(- \int{2 x^{2} d x} + \int{x^{3} d x}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=3$$$:

$$- 4 \int{2 x^{2} d x} + 4 {\color{red}{\int{x^{3} d x}}}=- 4 \int{2 x^{2} d x} + 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- 4 \int{2 x^{2} d x} + 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=2$$$ en $$$f{\left(x \right)} = x^{2}$$$:

$$x^{4} - 4 {\color{red}{\int{2 x^{2} d x}}} = x^{4} - 4 {\color{red}{\left(2 \int{x^{2} d x}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:

$$x^{4} - 8 {\color{red}{\int{x^{2} d x}}}=x^{4} - 8 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=x^{4} - 8 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Dus,

$$\int{x^{2} \left(4 x - 8\right) d x} = x^{4} - \frac{8 x^{3}}{3}$$

Vereenvoudig:

$$\int{x^{2} \left(4 x - 8\right) d x} = x^{3} \left(x - \frac{8}{3}\right)$$

Voeg de integratieconstante toe:

$$\int{x^{2} \left(4 x - 8\right) d x} = x^{3} \left(x - \frac{8}{3}\right)+C$$

Antwoord

$$$\int 2 x^{2} \left(2 x - 4\right)\, dx = x^{3} \left(x - \frac{8}{3}\right) + C$$$A


Please try a new game Rotatly