Integraal van $$$\frac{1 - x}{x + 1}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{1 - x}{x + 1}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{1 - x}{x + 1}\, dx$$$.

Oplossing

Zij $$$u=x + 1$$$.

Dan $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.

Dus,

$${\color{red}{\int{\frac{1 - x}{x + 1} d x}}} = {\color{red}{\int{\frac{2 - u}{u} d u}}}$$

Expand the expression:

$${\color{red}{\int{\frac{2 - u}{u} d u}}} = {\color{red}{\int{\left(-1 + \frac{2}{u}\right)d u}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(-1 + \frac{2}{u}\right)d u}}} = {\color{red}{\left(- \int{1 d u} + \int{\frac{2}{u} d u}\right)}}$$

Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:

$$\int{\frac{2}{u} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{2}{u} d u} - {\color{red}{u}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=2$$$ en $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$- u + {\color{red}{\int{\frac{2}{u} d u}}} = - u + {\color{red}{\left(2 \int{\frac{1}{u} d u}\right)}}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- u + 2 {\color{red}{\int{\frac{1}{u} d u}}} = - u + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

We herinneren eraan dat $$$u=x + 1$$$:

$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - {\color{red}{u}} = 2 \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)} - {\color{red}{\left(x + 1\right)}}$$

Dus,

$$\int{\frac{1 - x}{x + 1} d x} = - x + 2 \ln{\left(\left|{x + 1}\right| \right)} - 1$$

Voeg de constante van integratie toe (en verwijder de constante uit de uitdrukking):

$$\int{\frac{1 - x}{x + 1} d x} = - x + 2 \ln{\left(\left|{x + 1}\right| \right)}+C$$

Antwoord

$$$\int \frac{1 - x}{x + 1}\, dx = \left(- x + 2 \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly