Integraal van $$$\csc^{3}{\left(x \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\csc^{3}{\left(x \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \csc^{3}{\left(x \right)}\, dx$$$.

Oplossing

Voor de integraal $$$\int{\csc^{3}{\left(x \right)} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Zij $$$\operatorname{u}=\csc{\left(x \right)}$$$ en $$$\operatorname{dv}=\csc^{2}{\left(x \right)} dx$$$.

Dan $$$\operatorname{du}=\left(\csc{\left(x \right)}\right)^{\prime }dx=- \cot{\left(x \right)} \csc{\left(x \right)} dx$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{\csc^{2}{\left(x \right)} d x}=- \cot{\left(x \right)}$$$ (de stappen zijn te zien »).

Dus,

$$\int{\csc^{3}{\left(x \right)} d x}=\csc{\left(x \right)} \cdot \left(- \cot{\left(x \right)}\right)-\int{\left(- \cot{\left(x \right)}\right) \cdot \left(- \cot{\left(x \right)} \csc{\left(x \right)}\right) d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\cot^{2}{\left(x \right)} \csc{\left(x \right)} d x}$$

Pas de formule $$$\cot^{2}{\left(x \right)} = \csc^{2}{\left(x \right)} - 1$$$ toe:

$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\cot^{2}{\left(x \right)} \csc{\left(x \right)} d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{2}{\left(x \right)} - 1\right) \csc{\left(x \right)} d x}$$

Werk uit:

$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{2}{\left(x \right)} - 1\right) \csc{\left(x \right)} d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{3}{\left(x \right)} - \csc{\left(x \right)}\right)d x}$$

De integraal van een verschil is het verschil van integralen:

$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{3}{\left(x \right)} - \csc{\left(x \right)}\right)d x}=- \cot{\left(x \right)} \csc{\left(x \right)} + \int{\csc{\left(x \right)} d x} - \int{\csc^{3}{\left(x \right)} d x}$$

Dus krijgen we de volgende eenvoudige lineaire vergelijking met betrekking tot de integraal:

$${\color{red}{\int{\csc^{3}{\left(x \right)} d x}}}=- \cot{\left(x \right)} \csc{\left(x \right)} + \int{\csc{\left(x \right)} d x} - {\color{red}{\int{\csc^{3}{\left(x \right)} d x}}}$$

Door het op te lossen, verkrijgen we dat

$$\int{\csc^{3}{\left(x \right)} d x}=- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{\int{\csc{\left(x \right)} d x}}{2}$$

Herschrijf de cosecans als $$$\csc\left(x\right)=\frac{1}{\sin\left(x\right)}$$$:

$$- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\csc{\left(x \right)} d x}}}}{2} = - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}}}{2}$$

Herschrijf de sinus met behulp van de formule voor de dubbele hoek $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:

$$- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}}}{2} = - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}}{2}$$

Vermenigvuldig de teller en de noemer met $$$\sec^2\left(\frac{x}{2} \right)$$$:

$$- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}}{2} = - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}}{2}$$

Zij $$$u=\tan{\left(\frac{x}{2} \right)}$$$.

Dan $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$.

Dus,

$$- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}}{2} = - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

We herinneren eraan dat $$$u=\tan{\left(\frac{x}{2} \right)}$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)}}{2} - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2}$$

Dus,

$$\int{\csc^{3}{\left(x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}}{2} - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2}$$

Voeg de integratieconstante toe:

$$\int{\csc^{3}{\left(x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}}{2} - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2}+C$$

Antwoord

$$$\int \csc^{3}{\left(x \right)}\, dx = \left(\frac{\ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right)}{2} - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly