Rekenmachine voor bepaalde en oneigenlijke integralen

Bereken bepaalde en oneigenlijke integralen stap voor stap

De rekenmachine zal proberen de bepaalde integraal (d.w.z. met grenzen) te berekenen, ook als deze oneigenlijk is, waarbij de stappen worden getoond.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{\frac{\pi}{6}}^{\frac{e \pi}{3}}\left( \frac{1}{f \cos{\left(x \right)}} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\frac{1}{f \cos{\left(x \right)}} d x}=\frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{f}$$$ (for steps, see indefinite integral calculator)

The interval of integration contains the point $$$\frac{\pi}{2}$$$, which is not in the domain of the integrand, so this is an improper integral of type 2.

Therefore, divide the interval into the following subintervals: $$$\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$$$, $$$\left(\frac{\pi}{2}, \frac{e \pi}{3}\right)$$$. Evaluate the integral over each subinterval.

To evaluate an integral over an interval, we use the Fundamental Theorem of Calculus. However, we need to use limit if an endpoint of the interval is special (is not in the domain of the function).

$$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\left( \frac{1}{f \cos{\left(x \right)}} \right)dx=\lim_{x \to \frac{\pi}{2}}\left(\frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{f}\right)-\left(\frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{f}\right)|_{\left(x=\frac{\pi}{6}\right)}=\infty - \frac{\ln{\left(\sqrt{3} \right)}}{f}$$$

Since the value of the integral is not finite, the value of the initial integral is not finite either. Thus, the integral is divergent.

Answer: the integral is divergent.


Please try a new game Rotatly