$$$\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{\cos{\left(t \right)}}{2}\\0 & - \sin{\left(t \right)}\end{array}\right]$$$의 행렬식

이 계산기는 풀이 과정을 보여 주면서 정사각형 $$$2$$$x$$$2$$$ 행렬 $$$\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{\cos{\left(t \right)}}{2}\\0 & - \sin{\left(t \right)}\end{array}\right]$$$의 행렬식을 구합니다.

관련 계산기: 여인수 행렬 계산기

A

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\left|\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{\cos{\left(t \right)}}{2}\\0 & - \sin{\left(t \right)}\end{array}\right|$$$을(를) 계산하세요.

풀이

2x2 행렬의 행렬식은 $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$입니다.

$$$\left|\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{\cos{\left(t \right)}}{2}\\0 & - \sin{\left(t \right)}\end{array}\right| = \left(\frac{\sqrt{3}}{2}\right)\cdot \left(- \sin{\left(t \right)}\right) - \left(\frac{\cos{\left(t \right)}}{2}\right)\cdot \left(0\right) = - \frac{\sqrt{3} \sin{\left(t \right)}}{2}$$$

정답

$$$\left|\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{\cos{\left(t \right)}}{2}\\0 & - \sin{\left(t \right)}\end{array}\right| = - \frac{\sqrt{3} \sin{\left(t \right)}}{2}\approx - 0.866025403784439 \sin{\left(t \right)}$$$A


Please try a new game Rotatly