$$$x$$$에 대한 $$$28 x z \ln\left(x^{2}\right)$$$의 적분
사용자 입력
$$$\int 28 x z \ln\left(x^{2}\right)\, dx$$$을(를) 구하시오.
풀이
입력이 다음과 같이 다시 쓰입니다: $$$\int{28 x z \ln{\left(x^{2} \right)} d x}=\int{56 x z \ln{\left(x \right)} d x}$$$.
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=56 z$$$와 $$$f{\left(x \right)} = x \ln{\left(x \right)}$$$에 적용하세요:
$${\color{red}{\int{56 x z \ln{\left(x \right)} d x}}} = {\color{red}{\left(56 z \int{x \ln{\left(x \right)} d x}\right)}}$$
적분 $$$\int{x \ln{\left(x \right)} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=\ln{\left(x \right)}$$$와 $$$\operatorname{dv}=x dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{x d x}=\frac{x^{2}}{2}$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$$56 z {\color{red}{\int{x \ln{\left(x \right)} d x}}}=56 z {\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{2}}{2}-\int{\frac{x^{2}}{2} \cdot \frac{1}{x} d x}\right)}}=56 z {\color{red}{\left(\frac{x^{2} \ln{\left(x \right)}}{2} - \int{\frac{x}{2} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = x$$$에 적용하세요:
$$56 z \left(\frac{x^{2} \ln{\left(x \right)}}{2} - {\color{red}{\int{\frac{x}{2} d x}}}\right) = 56 z \left(\frac{x^{2} \ln{\left(x \right)}}{2} - {\color{red}{\left(\frac{\int{x d x}}{2}\right)}}\right)$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$56 z \left(\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{{\color{red}{\int{x d x}}}}{2}\right)=56 z \left(\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}\right)=56 z \left(\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}\right)$$
따라서,
$$\int{56 x z \ln{\left(x \right)} d x} = 56 z \left(\frac{x^{2} \ln{\left(x \right)}}{2} - \frac{x^{2}}{4}\right)$$
간단히 하시오:
$$\int{56 x z \ln{\left(x \right)} d x} = 14 x^{2} z \left(2 \ln{\left(x \right)} - 1\right)$$
적분 상수를 추가하세요:
$$\int{56 x z \ln{\left(x \right)} d x} = 14 x^{2} z \left(2 \ln{\left(x \right)} - 1\right)+C$$
정답
$$$\int 28 x z \ln\left(x^{2}\right)\, dx = 14 x^{2} z \left(2 \ln\left(x\right) - 1\right) + C$$$A