$$$x^{2} e^{- \frac{x}{2}}$$$의 적분
사용자 입력
$$$\int x^{2} e^{- \frac{x}{2}}\, dx$$$을(를) 구하시오.
풀이
적분 $$$\int{x^{2} e^{- \frac{x}{2}} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x^{2}$$$와 $$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$${\color{red}{\int{x^{2} e^{- \frac{x}{2}} d x}}}={\color{red}{\left(x^{2} \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot 2 x d x}\right)}}={\color{red}{\left(- 2 x^{2} e^{- \frac{x}{2}} - \int{\left(- 4 x e^{- \frac{x}{2}}\right)d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=-4$$$와 $$$f{\left(x \right)} = x e^{- \frac{x}{2}}$$$에 적용하세요:
$$- 2 x^{2} e^{- \frac{x}{2}} - {\color{red}{\int{\left(- 4 x e^{- \frac{x}{2}}\right)d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - {\color{red}{\left(- 4 \int{x e^{- \frac{x}{2}} d x}\right)}}$$
적분 $$$\int{x e^{- \frac{x}{2}} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x$$$와 $$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$$- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\int{x e^{- \frac{x}{2}} d x}}}=- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\left(x \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot 1 d x}\right)}}=- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\left(- 2 x e^{- \frac{x}{2}} - \int{\left(- 2 e^{- \frac{x}{2}}\right)d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=-2$$$와 $$$f{\left(x \right)} = e^{- \frac{x}{2}}$$$에 적용하세요:
$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 4 {\color{red}{\int{\left(- 2 e^{- \frac{x}{2}}\right)d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 4 {\color{red}{\left(- 2 \int{e^{- \frac{x}{2}} d x}\right)}}$$
$$$u=- \frac{x}{2}$$$라 하자.
그러면 $$$du=\left(- \frac{x}{2}\right)^{\prime }dx = - \frac{dx}{2}$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = - 2 du$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{e^{- \frac{x}{2}} d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-2$$$와 $$$f{\left(u \right)} = e^{u}$$$에 적용하세요:
$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{\left(- 2 e^{u}\right)d u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\left(- 2 \int{e^{u} d u}\right)}}$$
지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:
$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 {\color{red}{\int{e^{u} d u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 {\color{red}{e^{u}}}$$
다음 $$$u=- \frac{x}{2}$$$을 기억하라:
$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{{\color{red}{u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{{\color{red}{\left(- \frac{x}{2}\right)}}}$$
따라서,
$$\int{x^{2} e^{- \frac{x}{2}} d x} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{- \frac{x}{2}}$$
간단히 하시오:
$$\int{x^{2} e^{- \frac{x}{2}} d x} = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}}$$
적분 상수를 추가하세요:
$$\int{x^{2} e^{- \frac{x}{2}} d x} = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}}+C$$
정답
$$$\int x^{2} e^{- \frac{x}{2}}\, dx = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}} + C$$$A