$$$x$$$에 대한 $$$\frac{1}{2 a^{6} x^{5}}$$$의 적분

계산기는 $$$x$$$에 대한 $$$\frac{1}{2 a^{6} x^{5}}$$$의 적분/원시함수를 단계별로 찾아줍니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{1}{2 a^{6} x^{5}}\, dx$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{2 a^{6}}$$$$$$f{\left(x \right)} = \frac{1}{x^{5}}$$$에 적용하세요:

$${\color{red}{\int{\frac{1}{2 a^{6} x^{5}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{5}} d x}}{2 a^{6}}\right)}}$$

멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-5$$$에 적용합니다:

$$\frac{{\color{red}{\int{\frac{1}{x^{5}} d x}}}}{2 a^{6}}=\frac{{\color{red}{\int{x^{-5} d x}}}}{2 a^{6}}=\frac{{\color{red}{\frac{x^{-5 + 1}}{-5 + 1}}}}{2 a^{6}}=\frac{{\color{red}{\left(- \frac{x^{-4}}{4}\right)}}}{2 a^{6}}=\frac{{\color{red}{\left(- \frac{1}{4 x^{4}}\right)}}}{2 a^{6}}$$

따라서,

$$\int{\frac{1}{2 a^{6} x^{5}} d x} = - \frac{1}{8 a^{6} x^{4}}$$

적분 상수를 추가하세요:

$$\int{\frac{1}{2 a^{6} x^{5}} d x} = - \frac{1}{8 a^{6} x^{4}}+C$$

정답

$$$\int \frac{1}{2 a^{6} x^{5}}\, dx = - \frac{1}{8 a^{6} x^{4}} + C$$$A


Please try a new game Rotatly