$$$\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)}\, dx$$$을(를) 구하시오.

풀이

공식 $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$$$$\alpha=2 x$$$$$$\beta=6 x$$$를 대입하여 $$$\cos\left(2 x \right)\cos\left(6 x \right)$$$을(를) 다시 쓰십시오.:

$${\color{red}{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{\cos{\left(8 x \right)}}{2}\right) \sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}}$$

식을 전개하시오:

$${\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{\cos{\left(8 x \right)}}{2}\right) \sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)}}{2} + \frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)}}{2}\right)d x}}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)} + \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)}$$$에 적용하세요:

$${\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)}}{2} + \frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)} + \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)}\right)d x}}{2}\right)}}$$

각 항별로 적분하십시오:

$$\frac{{\color{red}{\int{\left(\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)} + \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)} d x} + \int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}\right)}}}{2}$$

공식 $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$$$$\alpha=2 x$$$$$$\beta=4 x$$$를 대입하여 $$$\sin\left(2 x \right)\cos\left(4 x \right)$$$을(를) 다시 쓰십시오.:

$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}\right) \sin{\left(6 x \right)} d x}}}}{2}$$

식을 전개하시오:

$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}\right) \sin{\left(6 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)}}{2} + \frac{\sin^{2}{\left(6 x \right)}}{2}\right)d x}}}}{2}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = - \sin{\left(2 x \right)} \sin{\left(6 x \right)} + \sin^{2}{\left(6 x \right)}$$$에 적용하세요:

$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)}}{2} + \frac{\sin^{2}{\left(6 x \right)}}{2}\right)d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(- \sin{\left(2 x \right)} \sin{\left(6 x \right)} + \sin^{2}{\left(6 x \right)}\right)d x}}{2}\right)}}}{2}$$

각 항별로 적분하십시오:

$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \sin{\left(6 x \right)} + \sin^{2}{\left(6 x \right)}\right)d x}}}}{4} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x} + \int{\sin^{2}{\left(6 x \right)} d x}\right)}}}{4}$$

$$$u=6 x$$$라 하자.

그러면 $$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{6}$$$임을 얻습니다.

따라서,

$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin^{2}{\left(6 x \right)} d x}}}}{4} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin^{2}{\left(u \right)}}{6} d u}}}}{4}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{6}$$$$$$f{\left(u \right)} = \sin^{2}{\left(u \right)}$$$에 적용하세요:

$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin^{2}{\left(u \right)}}{6} d u}}}}{4} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin^{2}{\left(u \right)} d u}}{6}\right)}}}{4}$$

멱 감소 공식 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$$$$\alpha= u $$$에 적용하세요:

$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin^{2}{\left(u \right)} d u}}}}{24} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}}{24}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = 1 - \cos{\left(2 u \right)}$$$에 적용하세요:

$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}}{24} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}{2}\right)}}}{24}$$

각 항별로 적분하십시오:

$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}}}{48} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(\int{1 d u} - \int{\cos{\left(2 u \right)} d u}\right)}}}{48}$$

상수 법칙 $$$\int c\, du = c u$$$$$$c=1$$$에 적용하십시오:

$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(2 u \right)} d u}}{48} + \frac{{\color{red}{\int{1 d u}}}}{48} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(2 u \right)} d u}}{48} + \frac{{\color{red}{u}}}{48}$$

$$$v=2 u$$$라 하자.

그러면 $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{dv}{2}$$$임을 얻습니다.

적분은 다음과 같이 됩니다.

$$\frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{48} = \frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{48}$$

상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$$$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \cos{\left(v \right)}$$$에 적용하세요:

$$\frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{48} = \frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{48}$$

코사인의 적분은 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$\frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{96} = \frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(v \right)}}}}{96}$$

다음 $$$v=2 u$$$을 기억하라:

$$\frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{v}} \right)}}{96} = \frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{96}$$

다음 $$$u=6 x$$$을 기억하라:

$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left(2 {\color{red}{u}} \right)}}{96} + \frac{{\color{red}{u}}}{48} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left(2 {\color{red}{\left(6 x\right)}} \right)}}{96} + \frac{{\color{red}{\left(6 x\right)}}}{48}$$

공식 $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$$$$\alpha=2 x$$$$$$\beta=6 x$$$와 함께 사용하여 피적분함수를 다시 쓰십시오.:

$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(8 x \right)}}{2}\right)d x}}}}{4}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \cos{\left(4 x \right)} - \cos{\left(8 x \right)}$$$에 적용하세요:

$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(8 x \right)}}{2}\right)d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(4 x \right)} - \cos{\left(8 x \right)}\right)d x}}{2}\right)}}}{4}$$

각 항별로 적분하십시오:

$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\left(\cos{\left(4 x \right)} - \cos{\left(8 x \right)}\right)d x}}}}{8} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\left(\int{\cos{\left(4 x \right)} d x} - \int{\cos{\left(8 x \right)} d x}\right)}}}{8}$$

$$$u=8 x$$$라 하자.

그러면 $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{8}$$$임을 얻습니다.

따라서,

$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\cos{\left(8 x \right)} d x}}}}{8} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{8}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:

$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{8}$$

코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\sin{\left(u \right)}}}}{64}$$

다음 $$$u=8 x$$$을 기억하라:

$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{\sin{\left({\color{red}{u}} \right)}}{64} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{\sin{\left({\color{red}{\left(8 x\right)}} \right)}}{64}$$

$$$u=4 x$$$라 하자.

그러면 $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{4}$$$임을 얻습니다.

적분은 다음과 같이 됩니다.

$$\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{8} = \frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{4}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:

$$\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$

코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$

다음 $$$u=4 x$$$을 기억하라:

$$\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{32}$$

공식 $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$$$$\alpha=2 x$$$$$$\beta=8 x$$$를 대입하여 $$$\sin\left(2 x \right)\cos\left(8 x \right)$$$을(를) 다시 쓰십시오.:

$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}}}{2} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(6 x \right)}}{2} + \frac{\sin{\left(10 x \right)}}{2}\right) \sin{\left(6 x \right)} d x}}}}{2}$$

식을 전개하시오:

$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(6 x \right)}}{2} + \frac{\sin{\left(10 x \right)}}{2}\right) \sin{\left(6 x \right)} d x}}}}{2} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\left(- \frac{\sin^{2}{\left(6 x \right)}}{2} + \frac{\sin{\left(6 x \right)} \sin{\left(10 x \right)}}{2}\right)d x}}}}{2}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = - \sin^{2}{\left(6 x \right)} + \sin{\left(6 x \right)} \sin{\left(10 x \right)}$$$에 적용하세요:

$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\left(- \frac{\sin^{2}{\left(6 x \right)}}{2} + \frac{\sin{\left(6 x \right)} \sin{\left(10 x \right)}}{2}\right)d x}}}}{2} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\left(\frac{\int{\left(- \sin^{2}{\left(6 x \right)} + \sin{\left(6 x \right)} \sin{\left(10 x \right)}\right)d x}}{2}\right)}}}{2}$$

각 항별로 적분하십시오:

$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\left(- \sin^{2}{\left(6 x \right)} + \sin{\left(6 x \right)} \sin{\left(10 x \right)}\right)d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\left(\int{\sin{\left(6 x \right)} \sin{\left(10 x \right)} d x} - \int{\sin^{2}{\left(6 x \right)} d x}\right)}}}{4}$$

이미 계산된 적분 $$$\int{\sin^{2}{\left(6 x \right)} d x}$$$:

$$\int{\sin^{2}{\left(6 x \right)} d x} = \frac{x}{2} - \frac{\sin{\left(12 x \right)}}{24}$$

따라서,

$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(6 x \right)} \sin{\left(10 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin^{2}{\left(6 x \right)} d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(6 x \right)} \sin{\left(10 x \right)} d x}}{4} - \frac{{\color{red}{\left(\frac{x}{2} - \frac{\sin{\left(12 x \right)}}{24}\right)}}}{4}$$

공식 $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$$$$\alpha=6 x$$$$$$\beta=10 x$$$와 함께 사용하여 피적분함수를 다시 쓰십시오.:

$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\int{\sin{\left(6 x \right)} \sin{\left(10 x \right)} d x}}}}{4} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(16 x \right)}}{2}\right)d x}}}}{4}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \cos{\left(4 x \right)} - \cos{\left(16 x \right)}$$$에 적용하세요:

$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(16 x \right)}}{2}\right)d x}}}}{4} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(4 x \right)} - \cos{\left(16 x \right)}\right)d x}}{2}\right)}}}{4}$$

각 항별로 적분하십시오:

$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\int{\left(\cos{\left(4 x \right)} - \cos{\left(16 x \right)}\right)d x}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\left(\int{\cos{\left(4 x \right)} d x} - \int{\cos{\left(16 x \right)} d x}\right)}}}{8}$$

$$$v=16 x$$$라 하자.

그러면 $$$dv=\left(16 x\right)^{\prime }dx = 16 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{dv}{16}$$$임을 얻습니다.

적분은 다음과 같이 다시 쓸 수 있습니다.

$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\cos{\left(16 x \right)} d x}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{16} d v}}}}{8}$$

상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$$$$c=\frac{1}{16}$$$$$$f{\left(v \right)} = \cos{\left(v \right)}$$$에 적용하세요:

$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{16} d v}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{16}\right)}}}{8}$$

코사인의 적분은 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{128} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\sin{\left(v \right)}}}}{128}$$

다음 $$$v=16 x$$$을 기억하라:

$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{\sin{\left({\color{red}{v}} \right)}}{128} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{\sin{\left({\color{red}{\left(16 x\right)}} \right)}}{128}$$

이미 계산된 적분 $$$\int{\cos{\left(4 x \right)} d x}$$$:

$$\int{\cos{\left(4 x \right)} d x} = \frac{\sin{\left(4 x \right)}}{4}$$

따라서,

$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(16 x \right)}}{128} + \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(16 x \right)}}{128} + \frac{{\color{red}{\left(\frac{\sin{\left(4 x \right)}}{4}\right)}}}{8}$$

따라서,

$$\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)} d x} = \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(16 x \right)}}{128}$$

적분 상수를 추가하세요:

$$\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)} d x} = \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(16 x \right)}}{128}+C$$

정답

$$$\int \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)}\, dx = \left(\frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(16 x \right)}}{128}\right) + C$$$A


Please try a new game Rotatly