$$$\frac{\ln\left(1 - z\right)}{z}$$$의 적분
사용자 입력
$$$\int \frac{\ln\left(1 - z\right)}{z}\, dz$$$을(를) 구하시오.
풀이
이 적분(폴리로그 함수)은 닫힌형 표현이 없습니다:
$${\color{red}{\int{\frac{\ln{\left(1 - z \right)}}{z} d z}}} = {\color{red}{\left(- \operatorname{Li}_{2}\left(z\right)\right)}}$$
따라서,
$$\int{\frac{\ln{\left(1 - z \right)}}{z} d z} = - \operatorname{Li}_{2}\left(z\right)$$
적분 상수를 추가하세요:
$$\int{\frac{\ln{\left(1 - z \right)}}{z} d z} = - \operatorname{Li}_{2}\left(z\right)+C$$
정답
$$$\int \frac{\ln\left(1 - z\right)}{z}\, dz = - \operatorname{Li}_{2}\left(z\right) + C$$$A
Please try a new game Rotatly