$$$4 \tan{\left(3 x \right)}$$$의 적분
사용자 입력
$$$\int 4 \tan{\left(3 x \right)}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=4$$$와 $$$f{\left(x \right)} = \tan{\left(3 x \right)}$$$에 적용하세요:
$${\color{red}{\int{4 \tan{\left(3 x \right)} d x}}} = {\color{red}{\left(4 \int{\tan{\left(3 x \right)} d x}\right)}}$$
$$$u=3 x$$$라 하자.
그러면 $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{3}$$$임을 얻습니다.
따라서,
$$4 {\color{red}{\int{\tan{\left(3 x \right)} d x}}} = 4 {\color{red}{\int{\frac{\tan{\left(u \right)}}{3} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(u \right)} = \tan{\left(u \right)}$$$에 적용하세요:
$$4 {\color{red}{\int{\frac{\tan{\left(u \right)}}{3} d u}}} = 4 {\color{red}{\left(\frac{\int{\tan{\left(u \right)} d u}}{3}\right)}}$$
탄젠트를 $$$\tan\left( u \right)=\frac{\sin\left( u \right)}{\cos\left( u \right)}$$$ 형태로 다시 쓰십시오:
$$\frac{4 {\color{red}{\int{\tan{\left(u \right)} d u}}}}{3} = \frac{4 {\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}}}{3}$$
$$$v=\cos{\left(u \right)}$$$라 하자.
그러면 $$$dv=\left(\cos{\left(u \right)}\right)^{\prime }du = - \sin{\left(u \right)} du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\sin{\left(u \right)} du = - dv$$$임을 얻습니다.
따라서,
$$\frac{4 {\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}}}{3} = \frac{4 {\color{red}{\int{\left(- \frac{1}{v}\right)d v}}}}{3}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=-1$$$와 $$$f{\left(v \right)} = \frac{1}{v}$$$에 적용하세요:
$$\frac{4 {\color{red}{\int{\left(- \frac{1}{v}\right)d v}}}}{3} = \frac{4 {\color{red}{\left(- \int{\frac{1}{v} d v}\right)}}}{3}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \frac{4 {\color{red}{\int{\frac{1}{v} d v}}}}{3} = - \frac{4 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{3}$$
다음 $$$v=\cos{\left(u \right)}$$$을 기억하라:
$$- \frac{4 \ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{3} = - \frac{4 \ln{\left(\left|{{\color{red}{\cos{\left(u \right)}}}}\right| \right)}}{3}$$
다음 $$$u=3 x$$$을 기억하라:
$$- \frac{4 \ln{\left(\left|{\cos{\left({\color{red}{u}} \right)}}\right| \right)}}{3} = - \frac{4 \ln{\left(\left|{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}\right| \right)}}{3}$$
따라서,
$$\int{4 \tan{\left(3 x \right)} d x} = - \frac{4 \ln{\left(\left|{\cos{\left(3 x \right)}}\right| \right)}}{3}$$
적분 상수를 추가하세요:
$$\int{4 \tan{\left(3 x \right)} d x} = - \frac{4 \ln{\left(\left|{\cos{\left(3 x \right)}}\right| \right)}}{3}+C$$
정답
$$$\int 4 \tan{\left(3 x \right)}\, dx = - \frac{4 \ln\left(\left|{\cos{\left(3 x \right)}}\right|\right)}{3} + C$$$A