$$$t$$$에 대한 $$$\frac{s^{2}}{d t}$$$의 적분
사용자 입력
$$$\int \frac{s^{2}}{d t}\, dt$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=\frac{s^{2}}{d}$$$와 $$$f{\left(t \right)} = \frac{1}{t}$$$에 적용하세요:
$${\color{red}{\int{\frac{s^{2}}{d t} d t}}} = {\color{red}{\frac{s^{2} \int{\frac{1}{t} d t}}{d}}}$$
$$$\frac{1}{t}$$$의 적분은 $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$$\frac{s^{2} {\color{red}{\int{\frac{1}{t} d t}}}}{d} = \frac{s^{2} {\color{red}{\ln{\left(\left|{t}\right| \right)}}}}{d}$$
따라서,
$$\int{\frac{s^{2}}{d t} d t} = \frac{s^{2} \ln{\left(\left|{t}\right| \right)}}{d}$$
적분 상수를 추가하세요:
$$\int{\frac{s^{2}}{d t} d t} = \frac{s^{2} \ln{\left(\left|{t}\right| \right)}}{d}+C$$
정답
$$$\int \frac{s^{2}}{d t}\, dt = \frac{s^{2} \ln\left(\left|{t}\right|\right)}{d} + C$$$A