$$$x$$$에 대한 $$$b^{x - 1}$$$의 적분

계산기는 $$$x$$$에 대한 $$$b^{x - 1}$$$의 적분/원시함수를 단계별로 찾아줍니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int b^{x - 1}\, dx$$$을(를) 구하시오.

풀이

$$$u=x - 1$$$라 하자.

그러면 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.

따라서,

$${\color{red}{\int{b^{x - 1} d x}}} = {\color{red}{\int{b^{u} d u}}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=b$$$:

$${\color{red}{\int{b^{u} d u}}} = {\color{red}{\frac{b^{u}}{\ln{\left(b \right)}}}}$$

다음 $$$u=x - 1$$$을 기억하라:

$$\frac{b^{{\color{red}{u}}}}{\ln{\left(b \right)}} = \frac{b^{{\color{red}{\left(x - 1\right)}}}}{\ln{\left(b \right)}}$$

따라서,

$$\int{b^{x - 1} d x} = \frac{b^{x - 1}}{\ln{\left(b \right)}}$$

적분 상수를 추가하세요:

$$\int{b^{x - 1} d x} = \frac{b^{x - 1}}{\ln{\left(b \right)}}+C$$

정답

$$$\int b^{x - 1}\, dx = \frac{b^{x - 1}}{\ln\left(b\right)} + C$$$A


Please try a new game Rotatly