$$$2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int 2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}\, dx$$$을(를) 구하시오.
풀이
공식 $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$에 $$$\alpha=2 x$$$와 $$$\beta=3 x$$$를 대입하여 $$$\sin\left(2 x \right)\sin\left(3 x \right)$$$을(를) 다시 쓰십시오.:
$${\color{red}{\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x}}} = {\color{red}{\int{\left(\cos{\left(x \right)} - \cos{\left(5 x \right)}\right)d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = 2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}$$$에 적용하세요:
$${\color{red}{\int{\left(\cos{\left(x \right)} - \cos{\left(5 x \right)}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}\right)d x}}{2}\right)}}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{2 \cos{\left(x \right)} d x} - \int{2 \cos{\left(5 x \right)} d x}\right)}}}{2}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=2$$$와 $$$f{\left(x \right)} = \cos{\left(5 x \right)}$$$에 적용하세요:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\int{2 \cos{\left(5 x \right)} d x}}}}{2} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\left(2 \int{\cos{\left(5 x \right)} d x}\right)}}}{2}$$
$$$u=5 x$$$라 하자.
그러면 $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{5}$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\cos{\left(5 x \right)} d x}}} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{5}$$$와 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{5}\right)}}$$
코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{5} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{5}$$
다음 $$$u=5 x$$$을 기억하라:
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{5} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{\left(5 x\right)}} \right)}}{5}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=2$$$와 $$$f{\left(x \right)} = \cos{\left(x \right)}$$$에 적용하세요:
$$- \frac{\sin{\left(5 x \right)}}{5} + \frac{{\color{red}{\int{2 \cos{\left(x \right)} d x}}}}{2} = - \frac{\sin{\left(5 x \right)}}{5} + \frac{{\color{red}{\left(2 \int{\cos{\left(x \right)} d x}\right)}}}{2}$$
코사인의 적분은 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- \frac{\sin{\left(5 x \right)}}{5} + {\color{red}{\int{\cos{\left(x \right)} d x}}} = - \frac{\sin{\left(5 x \right)}}{5} + {\color{red}{\sin{\left(x \right)}}}$$
따라서,
$$\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x} = \sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}$$
적분 상수를 추가하세요:
$$\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x} = \sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}+C$$
정답
$$$\int 2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}\, dx = \left(\sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}\right) + C$$$A