$$$2 \sin{\left(\ln\left(x\right) \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int 2 \sin{\left(\ln\left(x\right) \right)}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=2$$$와 $$$f{\left(x \right)} = \sin{\left(\ln{\left(x \right)} \right)}$$$에 적용하세요:
$${\color{red}{\int{2 \sin{\left(\ln{\left(x \right)} \right)} d x}}} = {\color{red}{\left(2 \int{\sin{\left(\ln{\left(x \right)} \right)} d x}\right)}}$$
적분 $$$\int{\sin{\left(\ln{\left(x \right)} \right)} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=\sin{\left(\ln{\left(x \right)} \right)}$$$와 $$$\operatorname{dv}=dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(\sin{\left(\ln{\left(x \right)} \right)}\right)^{\prime }dx=\frac{\cos{\left(\ln{\left(x \right)} \right)}}{x} dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{1 d x}=x$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 다시 쓸 수 있습니다.
$$2 {\color{red}{\int{\sin{\left(\ln{\left(x \right)} \right)} d x}}}=2 {\color{red}{\left(\sin{\left(\ln{\left(x \right)} \right)} \cdot x-\int{x \cdot \frac{\cos{\left(\ln{\left(x \right)} \right)}}{x} d x}\right)}}=2 {\color{red}{\left(x \sin{\left(\ln{\left(x \right)} \right)} - \int{\cos{\left(\ln{\left(x \right)} \right)} d x}\right)}}$$
적분 $$$\int{\cos{\left(\ln{\left(x \right)} \right)} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=\cos{\left(\ln{\left(x \right)} \right)}$$$와 $$$\operatorname{dv}=dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(\cos{\left(\ln{\left(x \right)} \right)}\right)^{\prime }dx=- \frac{\sin{\left(\ln{\left(x \right)} \right)}}{x} dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{1 d x}=x$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 다시 쓸 수 있습니다.
$$2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 {\color{red}{\int{\cos{\left(\ln{\left(x \right)} \right)} d x}}}=2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 {\color{red}{\left(\cos{\left(\ln{\left(x \right)} \right)} \cdot x-\int{x \cdot \left(- \frac{\sin{\left(\ln{\left(x \right)} \right)}}{x}\right) d x}\right)}}=2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 {\color{red}{\left(x \cos{\left(\ln{\left(x \right)} \right)} - \int{\left(- \sin{\left(\ln{\left(x \right)} \right)}\right)d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=-1$$$와 $$$f{\left(x \right)} = \sin{\left(\ln{\left(x \right)} \right)}$$$에 적용하세요:
$$2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 x \cos{\left(\ln{\left(x \right)} \right)} + 2 {\color{red}{\int{\left(- \sin{\left(\ln{\left(x \right)} \right)}\right)d x}}} = 2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 x \cos{\left(\ln{\left(x \right)} \right)} + 2 {\color{red}{\left(- \int{\sin{\left(\ln{\left(x \right)} \right)} d x}\right)}}$$
우리는 이미 보았던 적분에 도달했습니다.
따라서 적분에 관한 다음과 같은 간단한 등식을 얻었습니다:
$$2 \int{\sin{\left(\ln{\left(x \right)} \right)} d x} = 2 x \sin{\left(\ln{\left(x \right)} \right)} - 2 x \cos{\left(\ln{\left(x \right)} \right)} - 2 \int{\sin{\left(\ln{\left(x \right)} \right)} d x}$$
이를 풀면, 다음을 얻는다
$$\int{\sin{\left(\ln{\left(x \right)} \right)} d x} = \frac{x \left(\sin{\left(\ln{\left(x \right)} \right)} - \cos{\left(\ln{\left(x \right)} \right)}\right)}{2}$$
따라서,
$$2 {\color{red}{\int{\sin{\left(\ln{\left(x \right)} \right)} d x}}} = 2 {\color{red}{\left(\frac{x \left(\sin{\left(\ln{\left(x \right)} \right)} - \cos{\left(\ln{\left(x \right)} \right)}\right)}{2}\right)}}$$
따라서,
$$\int{2 \sin{\left(\ln{\left(x \right)} \right)} d x} = x \left(\sin{\left(\ln{\left(x \right)} \right)} - \cos{\left(\ln{\left(x \right)} \right)}\right)$$
간단히 하시오:
$$\int{2 \sin{\left(\ln{\left(x \right)} \right)} d x} = - \sqrt{2} x \cos{\left(\ln{\left(x \right)} + \frac{\pi}{4} \right)}$$
적분 상수를 추가하세요:
$$\int{2 \sin{\left(\ln{\left(x \right)} \right)} d x} = - \sqrt{2} x \cos{\left(\ln{\left(x \right)} + \frac{\pi}{4} \right)}+C$$
정답
$$$\int 2 \sin{\left(\ln\left(x\right) \right)}\, dx = - \sqrt{2} x \cos{\left(\ln\left(x\right) + \frac{\pi}{4} \right)} + C$$$A