$$$\frac{2 x^{4}}{x^{4} - 1}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{2 x^{4}}{x^{4} - 1}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{2 x^{4}}{x^{4} - 1}\, dx$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=2$$$$$$f{\left(x \right)} = \frac{x^{4}}{x^{4} - 1}$$$에 적용하세요:

$${\color{red}{\int{\frac{2 x^{4}}{x^{4} - 1} d x}}} = {\color{red}{\left(2 \int{\frac{x^{4}}{x^{4} - 1} d x}\right)}}$$

분수식을 다시 쓰고 분리하세요:

$$2 {\color{red}{\int{\frac{x^{4}}{x^{4} - 1} d x}}} = 2 {\color{red}{\int{\left(1 + \frac{1}{x^{4} - 1}\right)d x}}}$$

각 항별로 적분하십시오:

$$2 {\color{red}{\int{\left(1 + \frac{1}{x^{4} - 1}\right)d x}}} = 2 {\color{red}{\left(\int{1 d x} + \int{\frac{1}{x^{4} - 1} d x}\right)}}$$

상수 법칙 $$$\int c\, dx = c x$$$$$$c=1$$$에 적용하십시오:

$$2 \int{\frac{1}{x^{4} - 1} d x} + 2 {\color{red}{\int{1 d x}}} = 2 \int{\frac{1}{x^{4} - 1} d x} + 2 {\color{red}{x}}$$

부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):

$$2 x + 2 {\color{red}{\int{\frac{1}{x^{4} - 1} d x}}} = 2 x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x^{2} + 1\right)} - \frac{1}{4 \left(x + 1\right)} + \frac{1}{4 \left(x - 1\right)}\right)d x}}}$$

각 항별로 적분하십시오:

$$2 x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x^{2} + 1\right)} - \frac{1}{4 \left(x + 1\right)} + \frac{1}{4 \left(x - 1\right)}\right)d x}}} = 2 x + 2 {\color{red}{\left(\int{\frac{1}{4 \left(x - 1\right)} d x} - \int{\frac{1}{4 \left(x + 1\right)} d x} - \int{\frac{1}{2 \left(x^{2} + 1\right)} d x}\right)}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \frac{1}{x^{2} + 1}$$$에 적용하세요:

$$2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{2 \left(x^{2} + 1\right)} d x}}} = 2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x^{2} + 1} d x}}{2}\right)}}$$

$$$\frac{1}{x^{2} + 1}$$$의 적분은 $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:

$$2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = 2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - {\color{red}{\operatorname{atan}{\left(x \right)}}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{4}$$$$$$f{\left(x \right)} = \frac{1}{x + 1}$$$에 적용하세요:

$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{4 \left(x + 1\right)} d x}}} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{4}\right)}}$$

$$$u=x + 1$$$라 하자.

그러면 $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.

따라서,

$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

다음 $$$u=x + 1$$$을 기억하라:

$$2 x - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} = 2 x - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=\frac{1}{4}$$$$$$f{\left(x \right)} = \frac{1}{x - 1}$$$에 적용하세요:

$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 {\color{red}{\int{\frac{1}{4 \left(x - 1\right)} d x}}} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{4}\right)}}$$

$$$u=x - 1$$$라 하자.

그러면 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.

따라서,

$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

다음 $$$u=x - 1$$$을 기억하라:

$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}$$

따라서,

$$\int{\frac{2 x^{4}}{x^{4} - 1} d x} = 2 x + \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}$$

적분 상수를 추가하세요:

$$\int{\frac{2 x^{4}}{x^{4} - 1} d x} = 2 x + \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}+C$$

정답

$$$\int \frac{2 x^{4}}{x^{4} - 1}\, dx = \left(2 x + \frac{\ln\left(\left|{x - 1}\right|\right)}{2} - \frac{\ln\left(\left|{x + 1}\right|\right)}{2} - \operatorname{atan}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly