$$$- \frac{2 x}{3} - 1$$$의 적분
사용자 입력
$$$\int \left(- \frac{2 x}{3} - 1\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- \frac{2 x}{3} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{\frac{2 x}{3} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=1$$$에 적용하십시오:
$$- \int{\frac{2 x}{3} d x} - {\color{red}{\int{1 d x}}} = - \int{\frac{2 x}{3} d x} - {\color{red}{x}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{2}{3}$$$와 $$$f{\left(x \right)} = x$$$에 적용하세요:
$$- x - {\color{red}{\int{\frac{2 x}{3} d x}}} = - x - {\color{red}{\left(\frac{2 \int{x d x}}{3}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$- x - \frac{2 {\color{red}{\int{x d x}}}}{3}=- x - \frac{2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{3}=- x - \frac{2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{3}$$
따라서,
$$\int{\left(- \frac{2 x}{3} - 1\right)d x} = - \frac{x^{2}}{3} - x$$
간단히 하시오:
$$\int{\left(- \frac{2 x}{3} - 1\right)d x} = \frac{x \left(- x - 3\right)}{3}$$
적분 상수를 추가하세요:
$$\int{\left(- \frac{2 x}{3} - 1\right)d x} = \frac{x \left(- x - 3\right)}{3}+C$$
정답
$$$\int \left(- \frac{2 x}{3} - 1\right)\, dx = \frac{x \left(- x - 3\right)}{3} + C$$$A