$$$\frac{1}{x \ln^{9}\left(x\right)}$$$의 적분
사용자 입력
$$$\int \frac{1}{x \ln^{9}\left(x\right)}\, dx$$$을(를) 구하시오.
풀이
$$$u=\ln{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\frac{dx}{x} = du$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{9}} d x}}} = {\color{red}{\int{\frac{1}{u^{9}} d u}}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-9$$$에 적용합니다:
$${\color{red}{\int{\frac{1}{u^{9}} d u}}}={\color{red}{\int{u^{-9} d u}}}={\color{red}{\frac{u^{-9 + 1}}{-9 + 1}}}={\color{red}{\left(- \frac{u^{-8}}{8}\right)}}={\color{red}{\left(- \frac{1}{8 u^{8}}\right)}}$$
다음 $$$u=\ln{\left(x \right)}$$$을 기억하라:
$$- \frac{{\color{red}{u}}^{-8}}{8} = - \frac{{\color{red}{\ln{\left(x \right)}}}^{-8}}{8}$$
따라서,
$$\int{\frac{1}{x \ln{\left(x \right)}^{9}} d x} = - \frac{1}{8 \ln{\left(x \right)}^{8}}$$
적분 상수를 추가하세요:
$$\int{\frac{1}{x \ln{\left(x \right)}^{9}} d x} = - \frac{1}{8 \ln{\left(x \right)}^{8}}+C$$
정답
$$$\int \frac{1}{x \ln^{9}\left(x\right)}\, dx = - \frac{1}{8 \ln^{8}\left(x\right)} + C$$$A