$$$x$$$에 대한 $$$\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}\, dx$$$을(를) 구하시오.
풀이
분자와 분모에 $$$\sec^{2}{\left(x \right)}$$$를 곱합니다.:
$${\color{red}{\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{a^{2} + b^{2} \tan^{2}{\left(x \right)}} d x}}}$$
$$$u=\tan{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\sec^{2}{\left(x \right)} dx = du$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{a^{2} + b^{2} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{a^{2} + b^{2} u^{2}} d u}}}$$
$$$v=\frac{u \left|{b}\right|}{\left|{a}\right|}$$$라 하자.
그러면 $$$dv=\left(\frac{u \left|{b}\right|}{\left|{a}\right|}\right)^{\prime }du = \frac{\left|{b}\right|}{\left|{a}\right|} du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{\left|{a}\right| dv}{\left|{b}\right|}$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\frac{1}{a^{2} + b^{2} u^{2}} d u}}} = {\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(v^{2} + 1\right) \left|{b}\right|} d v}}}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{\left|{a}\right|}{a^{2} \left|{b}\right|}$$$와 $$$f{\left(v \right)} = \frac{1}{v^{2} + 1}$$$에 적용하세요:
$${\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(v^{2} + 1\right) \left|{b}\right|} d v}}} = {\color{red}{\frac{\left|{a}\right| \int{\frac{1}{v^{2} + 1} d v}}{a^{2} \left|{b}\right|}}}$$
$$$\frac{1}{v^{2} + 1}$$$의 적분은 $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$\frac{\left|{a}\right| {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| {\color{red}{\operatorname{atan}{\left(v \right)}}}}{a^{2} \left|{b}\right|}$$
다음 $$$v=\frac{u \left|{b}\right|}{\left|{a}\right|}$$$을 기억하라:
$$\frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{v}} \right)}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{\frac{u \left|{b}\right|}{\left|{a}\right|}}} \right)}}{a^{2} \left|{b}\right|}$$
다음 $$$u=\tan{\left(x \right)}$$$을 기억하라:
$$\frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\left|{b}\right| {\color{red}{u}}}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\left|{b}\right| {\color{red}{\tan{\left(x \right)}}}}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|}$$
따라서,
$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\tan{\left(x \right)} \left|{b}\right|}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|}$$
간단히 하시오:
$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}}$$
적분 상수를 추가하세요:
$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}}+C$$
정답
$$$\int \frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}\, dx = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}} + C$$$A