$$$-6 + \frac{1}{t^{3}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$-6 + \frac{1}{t^{3}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \left(-6 + \frac{1}{t^{3}}\right)\, dt$$$을(를) 구하시오.

풀이

각 항별로 적분하십시오:

$${\color{red}{\int{\left(-6 + \frac{1}{t^{3}}\right)d t}}} = {\color{red}{\left(- \int{6 d t} + \int{\frac{1}{t^{3}} d t}\right)}}$$

상수 법칙 $$$\int c\, dt = c t$$$$$$c=6$$$에 적용하십시오:

$$\int{\frac{1}{t^{3}} d t} - {\color{red}{\int{6 d t}}} = \int{\frac{1}{t^{3}} d t} - {\color{red}{\left(6 t\right)}}$$

멱법칙($$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-3$$$에 적용합니다:

$$- 6 t + {\color{red}{\int{\frac{1}{t^{3}} d t}}}=- 6 t + {\color{red}{\int{t^{-3} d t}}}=- 6 t + {\color{red}{\frac{t^{-3 + 1}}{-3 + 1}}}=- 6 t + {\color{red}{\left(- \frac{t^{-2}}{2}\right)}}=- 6 t + {\color{red}{\left(- \frac{1}{2 t^{2}}\right)}}$$

따라서,

$$\int{\left(-6 + \frac{1}{t^{3}}\right)d t} = - 6 t - \frac{1}{2 t^{2}}$$

적분 상수를 추가하세요:

$$\int{\left(-6 + \frac{1}{t^{3}}\right)d t} = - 6 t - \frac{1}{2 t^{2}}+C$$

정답

$$$\int \left(-6 + \frac{1}{t^{3}}\right)\, dt = \left(- 6 t - \frac{1}{2 t^{2}}\right) + C$$$A


Please try a new game Rotatly