$$$- 5^{u}$$$의 적분
사용자 입력
$$$\int \left(- 5^{u}\right)\, du$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-1$$$와 $$$f{\left(u \right)} = 5^{u}$$$에 적용하세요:
$${\color{red}{\int{\left(- 5^{u}\right)d u}}} = {\color{red}{\left(- \int{5^{u} d u}\right)}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=5$$$:
$$- {\color{red}{\int{5^{u} d u}}} = - {\color{red}{\frac{5^{u}}{\ln{\left(5 \right)}}}}$$
따라서,
$$\int{\left(- 5^{u}\right)d u} = - \frac{5^{u}}{\ln{\left(5 \right)}}$$
적분 상수를 추가하세요:
$$\int{\left(- 5^{u}\right)d u} = - \frac{5^{u}}{\ln{\left(5 \right)}}+C$$
정답
$$$\int \left(- 5^{u}\right)\, du = - \frac{5^{u}}{\ln\left(5\right)} + C$$$A
Please try a new game Rotatly