$$$\frac{\sqrt{1 - x}}{x}$$$의 적분
사용자 입력
$$$\int \frac{\sqrt{1 - x}}{x}\, dx$$$을(를) 구하시오.
풀이
$$$u=\sqrt{1 - x}$$$라 하자.
그러면 $$$du=\left(\sqrt{1 - x}\right)^{\prime }dx = - \frac{1}{2 \sqrt{1 - x}} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\frac{dx}{\sqrt{1 - x}} = - 2 du$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\frac{\sqrt{1 - x}}{x} d x}}} = {\color{red}{\int{\left(- \frac{2 u^{2}}{1 - u^{2}}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-2$$$와 $$$f{\left(u \right)} = \frac{u^{2}}{1 - u^{2}}$$$에 적용하세요:
$${\color{red}{\int{\left(- \frac{2 u^{2}}{1 - u^{2}}\right)d u}}} = {\color{red}{\left(- 2 \int{\frac{u^{2}}{1 - u^{2}} d u}\right)}}$$
분자의 차수가 분모의 차수보다 크거나 같으므로 다항식의 긴 나눗셈을 수행하십시오(단계는 »에서 볼 수 있습니다):
$$- 2 {\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}} = - 2 {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}}$$
각 항별로 적분하십시오:
$$- 2 {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}} = - 2 {\color{red}{\left(- \int{1 d u} + \int{\frac{1}{1 - u^{2}} d u}\right)}}$$
상수 법칙 $$$\int c\, du = c u$$$을 $$$c=1$$$에 적용하십시오:
$$- 2 \int{\frac{1}{1 - u^{2}} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{1 - u^{2}} d u} + 2 {\color{red}{u}}$$
부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):
$$2 u - 2 {\color{red}{\int{\frac{1}{1 - u^{2}} d u}}} = 2 u - 2 {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$
각 항별로 적분하십시오:
$$2 u - 2 {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}} = 2 u - 2 {\color{red}{\left(- \int{\frac{1}{2 \left(u - 1\right)} d u} + \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \frac{1}{u + 1}$$$에 적용하세요:
$$2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - 2 {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = 2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - 2 {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$
$$$v=u + 1$$$라 하자.
그러면 $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = dv$$$임을 얻습니다.
따라서,
$$2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\int{\frac{1}{u + 1} d u}}} = 2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\int{\frac{1}{v} d v}}}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\int{\frac{1}{v} d v}}} = 2 u + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
다음 $$$v=u + 1$$$을 기억하라:
$$2 u - \ln{\left(\left|{{\color{red}{v}}}\right| \right)} + 2 \int{\frac{1}{2 \left(u - 1\right)} d u} = 2 u - \ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)} + 2 \int{\frac{1}{2 \left(u - 1\right)} d u}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \frac{1}{u - 1}$$$에 적용하세요:
$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + 2 {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + 2 {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$
$$$v=u - 1$$$라 하자.
그러면 $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = dv$$$임을 얻습니다.
따라서,
$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\int{\frac{1}{u - 1} d u}}} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\int{\frac{1}{v} d v}}}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\int{\frac{1}{v} d v}}} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
다음 $$$v=u - 1$$$을 기억하라:
$$2 u - \ln{\left(\left|{u + 1}\right| \right)} + \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = 2 u - \ln{\left(\left|{u + 1}\right| \right)} + \ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}$$
다음 $$$u=\sqrt{1 - x}$$$을 기억하라:
$$\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)} - \ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)} + 2 {\color{red}{u}} = \ln{\left(\left|{-1 + {\color{red}{\sqrt{1 - x}}}}\right| \right)} - \ln{\left(\left|{1 + {\color{red}{\sqrt{1 - x}}}}\right| \right)} + 2 {\color{red}{\sqrt{1 - x}}}$$
따라서,
$$\int{\frac{\sqrt{1 - x}}{x} d x} = 2 \sqrt{1 - x} + \ln{\left(\left|{\sqrt{1 - x} - 1}\right| \right)} - \ln{\left(\left|{\sqrt{1 - x} + 1}\right| \right)}$$
적분 상수를 추가하세요:
$$\int{\frac{\sqrt{1 - x}}{x} d x} = 2 \sqrt{1 - x} + \ln{\left(\left|{\sqrt{1 - x} - 1}\right| \right)} - \ln{\left(\left|{\sqrt{1 - x} + 1}\right| \right)}+C$$
정답
$$$\int \frac{\sqrt{1 - x}}{x}\, dx = \left(2 \sqrt{1 - x} + \ln\left(\left|{\sqrt{1 - x} - 1}\right|\right) - \ln\left(\left|{\sqrt{1 - x} + 1}\right|\right)\right) + C$$$A