$$$y \ln\left(y\right) + 1$$$의 적분
사용자 입력
$$$\int \left(y \ln\left(y\right) + 1\right)\, dy$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(y \ln{\left(y \right)} + 1\right)d y}}} = {\color{red}{\left(\int{1 d y} + \int{y \ln{\left(y \right)} d y}\right)}}$$
상수 법칙 $$$\int c\, dy = c y$$$을 $$$c=1$$$에 적용하십시오:
$$\int{y \ln{\left(y \right)} d y} + {\color{red}{\int{1 d y}}} = \int{y \ln{\left(y \right)} d y} + {\color{red}{y}}$$
적분 $$$\int{y \ln{\left(y \right)} d y}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=\ln{\left(y \right)}$$$와 $$$\operatorname{dv}=y dy$$$라고 하자.
그러면 $$$\operatorname{du}=\left(\ln{\left(y \right)}\right)^{\prime }dy=\frac{dy}{y}$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{y d y}=\frac{y^{2}}{2}$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$$y + {\color{red}{\int{y \ln{\left(y \right)} d y}}}=y + {\color{red}{\left(\ln{\left(y \right)} \cdot \frac{y^{2}}{2}-\int{\frac{y^{2}}{2} \cdot \frac{1}{y} d y}\right)}}=y + {\color{red}{\left(\frac{y^{2} \ln{\left(y \right)}}{2} - \int{\frac{y}{2} d y}\right)}}$$
상수배 법칙 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(y \right)} = y$$$에 적용하세요:
$$\frac{y^{2} \ln{\left(y \right)}}{2} + y - {\color{red}{\int{\frac{y}{2} d y}}} = \frac{y^{2} \ln{\left(y \right)}}{2} + y - {\color{red}{\left(\frac{\int{y d y}}{2}\right)}}$$
멱법칙($$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$\frac{y^{2} \ln{\left(y \right)}}{2} + y - \frac{{\color{red}{\int{y d y}}}}{2}=\frac{y^{2} \ln{\left(y \right)}}{2} + y - \frac{{\color{red}{\frac{y^{1 + 1}}{1 + 1}}}}{2}=\frac{y^{2} \ln{\left(y \right)}}{2} + y - \frac{{\color{red}{\left(\frac{y^{2}}{2}\right)}}}{2}$$
따라서,
$$\int{\left(y \ln{\left(y \right)} + 1\right)d y} = \frac{y^{2} \ln{\left(y \right)}}{2} - \frac{y^{2}}{4} + y$$
간단히 하시오:
$$\int{\left(y \ln{\left(y \right)} + 1\right)d y} = \frac{y \left(2 y \ln{\left(y \right)} - y + 4\right)}{4}$$
적분 상수를 추가하세요:
$$\int{\left(y \ln{\left(y \right)} + 1\right)d y} = \frac{y \left(2 y \ln{\left(y \right)} - y + 4\right)}{4}+C$$
정답
$$$\int \left(y \ln\left(y\right) + 1\right)\, dy = \frac{y \left(2 y \ln\left(y\right) - y + 4\right)}{4} + C$$$A