$$$- x + \sqrt{2} x$$$의 적분
사용자 입력
$$$\int \left(- x + \sqrt{2} x\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(- x + \sqrt{2} x\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{\sqrt{2} x d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$\int{\sqrt{2} x d x} - {\color{red}{\int{x d x}}}=\int{\sqrt{2} x d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\sqrt{2} x d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\sqrt{2}$$$와 $$$f{\left(x \right)} = x$$$에 적용하세요:
$$- \frac{x^{2}}{2} + {\color{red}{\int{\sqrt{2} x d x}}} = - \frac{x^{2}}{2} + {\color{red}{\sqrt{2} \int{x d x}}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:
$$- \frac{x^{2}}{2} + \sqrt{2} {\color{red}{\int{x d x}}}=- \frac{x^{2}}{2} + \sqrt{2} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \frac{x^{2}}{2} + \sqrt{2} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
따라서,
$$\int{\left(- x + \sqrt{2} x\right)d x} = - \frac{x^{2}}{2} + \frac{\sqrt{2} x^{2}}{2}$$
간단히 하시오:
$$\int{\left(- x + \sqrt{2} x\right)d x} = \frac{x^{2} \left(-1 + \sqrt{2}\right)}{2}$$
적분 상수를 추가하세요:
$$\int{\left(- x + \sqrt{2} x\right)d x} = \frac{x^{2} \left(-1 + \sqrt{2}\right)}{2}+C$$
정답
$$$\int \left(- x + \sqrt{2} x\right)\, dx = \frac{x^{2} \left(-1 + \sqrt{2}\right)}{2} + C$$$A