$$$x^{5} \ln\left(7 x\right)$$$의 적분
사용자 입력
$$$\int x^{5} \ln\left(7 x\right)\, dx$$$을(를) 구하시오.
풀이
적분 $$$\int{x^{5} \ln{\left(7 x \right)} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=\ln{\left(7 x \right)}$$$와 $$$\operatorname{dv}=x^{5} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(\ln{\left(7 x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{x^{5} d x}=\frac{x^{6}}{6}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$${\color{red}{\int{x^{5} \ln{\left(7 x \right)} d x}}}={\color{red}{\left(\ln{\left(7 x \right)} \cdot \frac{x^{6}}{6}-\int{\frac{x^{6}}{6} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{x^{6} \ln{\left(7 x \right)}}{6} - \int{\frac{x^{5}}{6} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{6}$$$와 $$$f{\left(x \right)} = x^{5}$$$에 적용하세요:
$$\frac{x^{6} \ln{\left(7 x \right)}}{6} - {\color{red}{\int{\frac{x^{5}}{6} d x}}} = \frac{x^{6} \ln{\left(7 x \right)}}{6} - {\color{red}{\left(\frac{\int{x^{5} d x}}{6}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=5$$$에 적용합니다:
$$\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\int{x^{5} d x}}}}{6}=\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\frac{x^{1 + 5}}{1 + 5}}}}{6}=\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\left(\frac{x^{6}}{6}\right)}}}{6}$$
따라서,
$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{x^{6}}{36}$$
간단히 하시오:
$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \left(6 \ln{\left(x \right)} - 1 + 6 \ln{\left(7 \right)}\right)}{36}$$
적분 상수를 추가하세요:
$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \left(6 \ln{\left(x \right)} - 1 + 6 \ln{\left(7 \right)}\right)}{36}+C$$
정답
$$$\int x^{5} \ln\left(7 x\right)\, dx = \frac{x^{6} \left(6 \ln\left(x\right) - 1 + 6 \ln\left(7\right)\right)}{36} + C$$$A