$$$\frac{x}{\left(x - 1\right)^{2}}$$$의 적분
사용자 입력
$$$\int \frac{x}{\left(x - 1\right)^{2}}\, dx$$$을(를) 구하시오.
풀이
피적분함수의 분자를 $$$x=x - 1+1$$$로 다시 쓰고 분수를 분해하세요:
$${\color{red}{\int{\frac{x}{\left(x - 1\right)^{2}} d x}}} = {\color{red}{\int{\left(\frac{1}{x - 1} + \frac{1}{\left(x - 1\right)^{2}}\right)d x}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(\frac{1}{x - 1} + \frac{1}{\left(x - 1\right)^{2}}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{\left(x - 1\right)^{2}} d x} + \int{\frac{1}{x - 1} d x}\right)}}$$
$$$u=x - 1$$$라 하자.
그러면 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.
따라서,
$$\int{\frac{1}{\left(x - 1\right)^{2}} d x} + {\color{red}{\int{\frac{1}{x - 1} d x}}} = \int{\frac{1}{\left(x - 1\right)^{2}} d x} + {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\int{\frac{1}{\left(x - 1\right)^{2}} d x} + {\color{red}{\int{\frac{1}{u} d u}}} = \int{\frac{1}{\left(x - 1\right)^{2}} d x} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
다음 $$$u=x - 1$$$을 기억하라:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \int{\frac{1}{\left(x - 1\right)^{2}} d x} = \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)} + \int{\frac{1}{\left(x - 1\right)^{2}} d x}$$
$$$u=x - 1$$$라 하자.
그러면 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.
따라서,
$$\ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\int{\frac{1}{\left(x - 1\right)^{2}} d x}}} = \ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-2$$$에 적용합니다:
$$\ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\int{\frac{1}{u^{2}} d u}}}=\ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\int{u^{-2} d u}}}=\ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=\ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\left(- u^{-1}\right)}}=\ln{\left(\left|{x - 1}\right| \right)} + {\color{red}{\left(- \frac{1}{u}\right)}}$$
다음 $$$u=x - 1$$$을 기억하라:
$$\ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{u}}^{-1} = \ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\left(x - 1\right)}}^{-1}$$
따라서,
$$\int{\frac{x}{\left(x - 1\right)^{2}} d x} = \ln{\left(\left|{x - 1}\right| \right)} - \frac{1}{x - 1}$$
간단히 하시오:
$$\int{\frac{x}{\left(x - 1\right)^{2}} d x} = \frac{\left(x - 1\right) \ln{\left(\left|{x - 1}\right| \right)} - 1}{x - 1}$$
적분 상수를 추가하세요:
$$\int{\frac{x}{\left(x - 1\right)^{2}} d x} = \frac{\left(x - 1\right) \ln{\left(\left|{x - 1}\right| \right)} - 1}{x - 1}+C$$
정답
$$$\int \frac{x}{\left(x - 1\right)^{2}}\, dx = \frac{\left(x - 1\right) \ln\left(\left|{x - 1}\right|\right) - 1}{x - 1} + C$$$A