$$$\frac{x}{\sqrt{4 - x}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{x}{\sqrt{4 - x}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{x}{\sqrt{4 - x}}\, dx$$$을(를) 구하시오.

풀이

$$$u=4 - x$$$라 하자.

그러면 $$$du=\left(4 - x\right)^{\prime }dx = - dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = - du$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\frac{x}{\sqrt{4 - x}} d x}}} = {\color{red}{\int{\frac{u - 4}{\sqrt{u}} d u}}}$$

Expand the expression:

$${\color{red}{\int{\frac{u - 4}{\sqrt{u}} d u}}} = {\color{red}{\int{\left(\sqrt{u} - \frac{4}{\sqrt{u}}\right)d u}}}$$

각 항별로 적분하십시오:

$${\color{red}{\int{\left(\sqrt{u} - \frac{4}{\sqrt{u}}\right)d u}}} = {\color{red}{\left(- \int{\frac{4}{\sqrt{u}} d u} + \int{\sqrt{u} d u}\right)}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=\frac{1}{2}$$$에 적용합니다:

$$- \int{\frac{4}{\sqrt{u}} d u} + {\color{red}{\int{\sqrt{u} d u}}}=- \int{\frac{4}{\sqrt{u}} d u} + {\color{red}{\int{u^{\frac{1}{2}} d u}}}=- \int{\frac{4}{\sqrt{u}} d u} + {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- \int{\frac{4}{\sqrt{u}} d u} + {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=4$$$$$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$에 적용하세요:

$$\frac{2 u^{\frac{3}{2}}}{3} - {\color{red}{\int{\frac{4}{\sqrt{u}} d u}}} = \frac{2 u^{\frac{3}{2}}}{3} - {\color{red}{\left(4 \int{\frac{1}{\sqrt{u}} d u}\right)}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=- \frac{1}{2}$$$에 적용합니다:

$$\frac{2 u^{\frac{3}{2}}}{3} - 4 {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}=\frac{2 u^{\frac{3}{2}}}{3} - 4 {\color{red}{\int{u^{- \frac{1}{2}} d u}}}=\frac{2 u^{\frac{3}{2}}}{3} - 4 {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=\frac{2 u^{\frac{3}{2}}}{3} - 4 {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}=\frac{2 u^{\frac{3}{2}}}{3} - 4 {\color{red}{\left(2 \sqrt{u}\right)}}$$

다음 $$$u=4 - x$$$을 기억하라:

$$- 8 \sqrt{{\color{red}{u}}} + \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = - 8 \sqrt{{\color{red}{\left(4 - x\right)}}} + \frac{2 {\color{red}{\left(4 - x\right)}}^{\frac{3}{2}}}{3}$$

따라서,

$$\int{\frac{x}{\sqrt{4 - x}} d x} = \frac{2 \left(4 - x\right)^{\frac{3}{2}}}{3} - 8 \sqrt{4 - x}$$

간단히 하시오:

$$\int{\frac{x}{\sqrt{4 - x}} d x} = \frac{2 \sqrt{4 - x} \left(- x - 8\right)}{3}$$

적분 상수를 추가하세요:

$$\int{\frac{x}{\sqrt{4 - x}} d x} = \frac{2 \sqrt{4 - x} \left(- x - 8\right)}{3}+C$$

정답

$$$\int \frac{x}{\sqrt{4 - x}}\, dx = \frac{2 \sqrt{4 - x} \left(- x - 8\right)}{3} + C$$$A


Please try a new game Rotatly