$$$- t^{8} + e t^{7}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$- t^{8} + e t^{7}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \left(- t^{8} + e t^{7}\right)\, dt$$$을(를) 구하시오.

풀이

각 항별로 적분하십시오:

$${\color{red}{\int{\left(- t^{8} + e t^{7}\right)d t}}} = {\color{red}{\left(- \int{t^{8} d t} + \int{e t^{7} d t}\right)}}$$

멱법칙($$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=8$$$에 적용합니다:

$$\int{e t^{7} d t} - {\color{red}{\int{t^{8} d t}}}=\int{e t^{7} d t} - {\color{red}{\frac{t^{1 + 8}}{1 + 8}}}=\int{e t^{7} d t} - {\color{red}{\left(\frac{t^{9}}{9}\right)}}$$

상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$$$$c=e$$$$$$f{\left(t \right)} = t^{7}$$$에 적용하세요:

$$- \frac{t^{9}}{9} + {\color{red}{\int{e t^{7} d t}}} = - \frac{t^{9}}{9} + {\color{red}{e \int{t^{7} d t}}}$$

멱법칙($$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=7$$$에 적용합니다:

$$- \frac{t^{9}}{9} + e {\color{red}{\int{t^{7} d t}}}=- \frac{t^{9}}{9} + e {\color{red}{\frac{t^{1 + 7}}{1 + 7}}}=- \frac{t^{9}}{9} + e {\color{red}{\left(\frac{t^{8}}{8}\right)}}$$

따라서,

$$\int{\left(- t^{8} + e t^{7}\right)d t} = - \frac{t^{9}}{9} + \frac{e t^{8}}{8}$$

간단히 하시오:

$$\int{\left(- t^{8} + e t^{7}\right)d t} = t^{8} \left(- \frac{t}{9} + \frac{e}{8}\right)$$

적분 상수를 추가하세요:

$$\int{\left(- t^{8} + e t^{7}\right)d t} = t^{8} \left(- \frac{t}{9} + \frac{e}{8}\right)+C$$

정답

$$$\int \left(- t^{8} + e t^{7}\right)\, dt = t^{8} \left(- \frac{t}{9} + \frac{e}{8}\right) + C$$$A


Please try a new game Rotatly