$$$\sqrt{6} \left(4 x^{7} + 1\right)$$$의 적분
사용자 입력
$$$\int \sqrt{6} \left(4 x^{7} + 1\right)\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\sqrt{6}$$$와 $$$f{\left(x \right)} = 4 x^{7} + 1$$$에 적용하세요:
$${\color{red}{\int{\sqrt{6} \left(4 x^{7} + 1\right) d x}}} = {\color{red}{\sqrt{6} \int{\left(4 x^{7} + 1\right)d x}}}$$
각 항별로 적분하십시오:
$$\sqrt{6} {\color{red}{\int{\left(4 x^{7} + 1\right)d x}}} = \sqrt{6} {\color{red}{\left(\int{1 d x} + \int{4 x^{7} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=1$$$에 적용하십시오:
$$\sqrt{6} \left(\int{4 x^{7} d x} + {\color{red}{\int{1 d x}}}\right) = \sqrt{6} \left(\int{4 x^{7} d x} + {\color{red}{x}}\right)$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=4$$$와 $$$f{\left(x \right)} = x^{7}$$$에 적용하세요:
$$\sqrt{6} \left(x + {\color{red}{\int{4 x^{7} d x}}}\right) = \sqrt{6} \left(x + {\color{red}{\left(4 \int{x^{7} d x}\right)}}\right)$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=7$$$에 적용합니다:
$$\sqrt{6} \left(x + 4 {\color{red}{\int{x^{7} d x}}}\right)=\sqrt{6} \left(x + 4 {\color{red}{\frac{x^{1 + 7}}{1 + 7}}}\right)=\sqrt{6} \left(x + 4 {\color{red}{\left(\frac{x^{8}}{8}\right)}}\right)$$
따라서,
$$\int{\sqrt{6} \left(4 x^{7} + 1\right) d x} = \sqrt{6} \left(\frac{x^{8}}{2} + x\right)$$
간단히 하시오:
$$\int{\sqrt{6} \left(4 x^{7} + 1\right) d x} = \frac{\sqrt{6} x \left(x^{7} + 2\right)}{2}$$
적분 상수를 추가하세요:
$$\int{\sqrt{6} \left(4 x^{7} + 1\right) d x} = \frac{\sqrt{6} x \left(x^{7} + 2\right)}{2}+C$$
정답
$$$\int \sqrt{6} \left(4 x^{7} + 1\right)\, dx = \frac{\sqrt{6} x \left(x^{7} + 2\right)}{2} + C$$$A