$$$\sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)}\, dx$$$을(를) 구하시오.
풀이
$$$u=\cos{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\sin{\left(x \right)} dx = - du$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)} d x}}} = {\color{red}{\int{\left(- \cos^{2}{\left(u \right)}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-1$$$와 $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$에 적용하세요:
$${\color{red}{\int{\left(- \cos^{2}{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\cos^{2}{\left(u \right)} d u}\right)}}$$
멱 감소 공식 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$를 $$$\alpha= u $$$에 적용하세요:
$$- {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = - {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$에 적용하세요:
$$- {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = - {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}$$
각 항별로 적분하십시오:
$$- \frac{{\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{2} = - \frac{{\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{2}$$
상수 법칙 $$$\int c\, du = c u$$$을 $$$c=1$$$에 적용하십시오:
$$- \frac{\int{\cos{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{\int{\cos{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{u}}}{2}$$
$$$v=2 u$$$라 하자.
그러면 $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{dv}{2}$$$임을 얻습니다.
따라서,
$$- \frac{u}{2} - \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{2} = - \frac{u}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(v \right)} = \cos{\left(v \right)}$$$에 적용하세요:
$$- \frac{u}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2} = - \frac{u}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{2}$$
코사인의 적분은 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$- \frac{u}{2} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = - \frac{u}{2} - \frac{{\color{red}{\sin{\left(v \right)}}}}{4}$$
다음 $$$v=2 u$$$을 기억하라:
$$- \frac{u}{2} - \frac{\sin{\left({\color{red}{v}} \right)}}{4} = - \frac{u}{2} - \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$
다음 $$$u=\cos{\left(x \right)}$$$을 기억하라:
$$- \frac{\sin{\left(2 {\color{red}{u}} \right)}}{4} - \frac{{\color{red}{u}}}{2} = - \frac{\sin{\left(2 {\color{red}{\cos{\left(x \right)}}} \right)}}{4} - \frac{{\color{red}{\cos{\left(x \right)}}}}{2}$$
따라서,
$$\int{\sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)} d x} = - \frac{\sin{\left(2 \cos{\left(x \right)} \right)}}{4} - \frac{\cos{\left(x \right)}}{2}$$
적분 상수를 추가하세요:
$$\int{\sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)} d x} = - \frac{\sin{\left(2 \cos{\left(x \right)} \right)}}{4} - \frac{\cos{\left(x \right)}}{2}+C$$
정답
$$$\int \sin{\left(x \right)} \cos^{2}{\left(\cos{\left(x \right)} \right)}\, dx = \left(- \frac{\sin{\left(2 \cos{\left(x \right)} \right)}}{4} - \frac{\cos{\left(x \right)}}{2}\right) + C$$$A