$$$\frac{\sin{\left(x \right)}}{\cos{\left(2 x \right)}}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{\sin{\left(x \right)}}{\cos{\left(2 x \right)}}\, dx$$$을(를) 구하시오.
풀이
배각 공식 $$$\cos{\left(2 x \right)} = 2 \cos^{2}{\left(x \right)} - 1$$$에 따라 코사인을 다시 표현하십시오:
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{\sin{\left(x \right)}}{2 \cos^{2}{\left(x \right)} - 1} d x}}}$$
$$$u=\cos{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\sin{\left(x \right)} dx = - du$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{2 \cos^{2}{\left(x \right)} - 1} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 u^{2} - 1}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-1$$$와 $$$f{\left(u \right)} = \frac{1}{2 u^{2} - 1}$$$에 적용하세요:
$${\color{red}{\int{\left(- \frac{1}{2 u^{2} - 1}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{2 u^{2} - 1} d u}\right)}}$$
부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):
$$- {\color{red}{\int{\frac{1}{2 u^{2} - 1} d u}}} = - {\color{red}{\int{\left(- \frac{1}{2 \left(\sqrt{2} u + 1\right)} + \frac{1}{2 \left(\sqrt{2} u - 1\right)}\right)d u}}}$$
각 항별로 적분하십시오:
$$- {\color{red}{\int{\left(- \frac{1}{2 \left(\sqrt{2} u + 1\right)} + \frac{1}{2 \left(\sqrt{2} u - 1\right)}\right)d u}}} = - {\color{red}{\left(\int{\frac{1}{2 \left(\sqrt{2} u - 1\right)} d u} - \int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u}\right)}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \frac{1}{\sqrt{2} u - 1}$$$에 적용하세요:
$$\int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u} - {\color{red}{\int{\frac{1}{2 \left(\sqrt{2} u - 1\right)} d u}}} = \int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u} - {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{2} u - 1} d u}}{2}\right)}}$$
$$$v=\sqrt{2} u - 1$$$라 하자.
그러면 $$$dv=\left(\sqrt{2} u - 1\right)^{\prime }du = \sqrt{2} du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{\sqrt{2} dv}{2}$$$임을 얻습니다.
따라서,
$$\int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u} - \frac{{\color{red}{\int{\frac{1}{\sqrt{2} u - 1} d u}}}}{2} = \int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u} - \frac{{\color{red}{\int{\frac{\sqrt{2}}{2 v} d v}}}}{2}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{\sqrt{2}}{2}$$$와 $$$f{\left(v \right)} = \frac{1}{v}$$$에 적용하세요:
$$\int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u} - \frac{{\color{red}{\int{\frac{\sqrt{2}}{2 v} d v}}}}{2} = \int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u} - \frac{{\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{v} d v}}{2}\right)}}}{2}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u} - \frac{\sqrt{2} {\color{red}{\int{\frac{1}{v} d v}}}}{4} = \int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u} - \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{4}$$
다음 $$$v=\sqrt{2} u - 1$$$을 기억하라:
$$- \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{4} + \int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u} = - \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(\sqrt{2} u - 1\right)}}}\right| \right)}}{4} + \int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \frac{1}{\sqrt{2} u + 1}$$$에 적용하세요:
$$- \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} u - 1}\right| \right)}}{4} + {\color{red}{\int{\frac{1}{2 \left(\sqrt{2} u + 1\right)} d u}}} = - \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} u - 1}\right| \right)}}{4} + {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{2} u + 1} d u}}{2}\right)}}$$
$$$v=\sqrt{2} u + 1$$$라 하자.
그러면 $$$dv=\left(\sqrt{2} u + 1\right)^{\prime }du = \sqrt{2} du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{\sqrt{2} dv}{2}$$$임을 얻습니다.
따라서,
$$- \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} u - 1}\right| \right)}}{4} + \frac{{\color{red}{\int{\frac{1}{\sqrt{2} u + 1} d u}}}}{2} = - \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} u - 1}\right| \right)}}{4} + \frac{{\color{red}{\int{\frac{\sqrt{2}}{2 v} d v}}}}{2}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{\sqrt{2}}{2}$$$와 $$$f{\left(v \right)} = \frac{1}{v}$$$에 적용하세요:
$$- \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} u - 1}\right| \right)}}{4} + \frac{{\color{red}{\int{\frac{\sqrt{2}}{2 v} d v}}}}{2} = - \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} u - 1}\right| \right)}}{4} + \frac{{\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{v} d v}}{2}\right)}}}{2}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} u - 1}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\int{\frac{1}{v} d v}}}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} u - 1}\right| \right)}}{4} + \frac{\sqrt{2} {\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{4}$$
다음 $$$v=\sqrt{2} u + 1$$$을 기억하라:
$$- \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} u - 1}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} u - 1}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{{\color{red}{\left(\sqrt{2} u + 1\right)}}}\right| \right)}}{4}$$
다음 $$$u=\cos{\left(x \right)}$$$을 기억하라:
$$- \frac{\sqrt{2} \ln{\left(\left|{-1 + \sqrt{2} {\color{red}{u}}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{1 + \sqrt{2} {\color{red}{u}}}\right| \right)}}{4} = - \frac{\sqrt{2} \ln{\left(\left|{-1 + \sqrt{2} {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{1 + \sqrt{2} {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{4}$$
따라서,
$$\int{\frac{\sin{\left(x \right)}}{\cos{\left(2 x \right)}} d x} = - \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} \cos{\left(x \right)} - 1}\right| \right)}}{4} + \frac{\sqrt{2} \ln{\left(\left|{\sqrt{2} \cos{\left(x \right)} + 1}\right| \right)}}{4}$$
간단히 하시오:
$$\int{\frac{\sin{\left(x \right)}}{\cos{\left(2 x \right)}} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{\sqrt{2} \cos{\left(x \right)} - 1}\right| \right)} + \ln{\left(\left|{\sqrt{2} \cos{\left(x \right)} + 1}\right| \right)}\right)}{4}$$
적분 상수를 추가하세요:
$$\int{\frac{\sin{\left(x \right)}}{\cos{\left(2 x \right)}} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{\sqrt{2} \cos{\left(x \right)} - 1}\right| \right)} + \ln{\left(\left|{\sqrt{2} \cos{\left(x \right)} + 1}\right| \right)}\right)}{4}+C$$
정답
$$$\int \frac{\sin{\left(x \right)}}{\cos{\left(2 x \right)}}\, dx = \frac{\sqrt{2} \left(- \ln\left(\left|{\sqrt{2} \cos{\left(x \right)} - 1}\right|\right) + \ln\left(\left|{\sqrt{2} \cos{\left(x \right)} + 1}\right|\right)\right)}{4} + C$$$A