$$$x$$$에 대한 $$$a^{2} b^{2} \sin^{2}{\left(2 x \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int a^{2} b^{2} \sin^{2}{\left(2 x \right)}\, dx$$$을(를) 구하시오.
풀이
멱 감소 공식 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$를 $$$\alpha=2 x$$$에 적용하세요:
$${\color{red}{\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)}{2} d x}}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)$$$에 적용하세요:
$${\color{red}{\int{\frac{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right) d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- a^{2} b^{2} \cos{\left(4 x \right)} + a^{2} b^{2}\right)d x}}}}{2}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(- a^{2} b^{2} \cos{\left(4 x \right)} + a^{2} b^{2}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{a^{2} b^{2} d x} - \int{a^{2} b^{2} \cos{\left(4 x \right)} d x}\right)}}}{2}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=a^{2} b^{2}$$$에 적용하십시오:
$$- \frac{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{a^{2} b^{2} d x}}}}{2} = - \frac{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{a^{2} b^{2} x}}}{2}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=a^{2} b^{2}$$$와 $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$에 적용하세요:
$$\frac{a^{2} b^{2} x}{2} - \frac{{\color{red}{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{{\color{red}{a^{2} b^{2} \int{\cos{\left(4 x \right)} d x}}}}{2}$$
$$$u=4 x$$$라 하자.
그러면 $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{4}$$$임을 얻습니다.
따라서,
$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:
$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{2}$$
코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\sin{\left(u \right)}}}}{8}$$
다음 $$$u=4 x$$$을 기억하라:
$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left({\color{red}{u}} \right)}}{8} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left({\color{red}{\left(4 x\right)}} \right)}}{8}$$
따라서,
$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left(4 x \right)}}{8}$$
간단히 하시오:
$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8}$$
적분 상수를 추가하세요:
$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8}+C$$
정답
$$$\int a^{2} b^{2} \sin^{2}{\left(2 x \right)}\, dx = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8} + C$$$A