$$$- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)\, dt$$$을(를) 구하시오.

풀이

각 항별로 적분하십시오:

$${\color{red}{\int{\left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)d t}}} = {\color{red}{\left(\int{\sin^{2}{\left(t \right)} d t} - \int{\sin^{4}{\left(t \right)} d t}\right)}}$$

멱 감소 공식 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$$$$\alpha=t$$$에 적용하세요:

$$- \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\int{\sin^{2}{\left(t \right)} d t}}} = - \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}}$$

상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$$$$c=\frac{1}{2}$$$$$$f{\left(t \right)} = 1 - \cos{\left(2 t \right)}$$$에 적용하세요:

$$- \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}} = - \int{\sin^{4}{\left(t \right)} d t} + {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}{2}\right)}}$$

각 항별로 적분하십시오:

$$- \int{\sin^{4}{\left(t \right)} d t} + \frac{{\color{red}{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}}}{2} = - \int{\sin^{4}{\left(t \right)} d t} + \frac{{\color{red}{\left(\int{1 d t} - \int{\cos{\left(2 t \right)} d t}\right)}}}{2}$$

상수 법칙 $$$\int c\, dt = c t$$$$$$c=1$$$에 적용하십시오:

$$- \int{\sin^{4}{\left(t \right)} d t} - \frac{\int{\cos{\left(2 t \right)} d t}}{2} + \frac{{\color{red}{\int{1 d t}}}}{2} = - \int{\sin^{4}{\left(t \right)} d t} - \frac{\int{\cos{\left(2 t \right)} d t}}{2} + \frac{{\color{red}{t}}}{2}$$

$$$u=2 t$$$라 하자.

그러면 $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = \frac{du}{2}$$$임을 얻습니다.

따라서,

$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{2} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$에 적용하세요:

$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$

코사인의 적분은 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$

다음 $$$u=2 t$$$을 기억하라:

$$\frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{t}{2} - \int{\sin^{4}{\left(t \right)} d t} - \frac{\sin{\left({\color{red}{\left(2 t\right)}} \right)}}{4}$$

멱 감소 공식 $$$\sin^{4}{\left(\alpha \right)} = - \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{\cos{\left(4 \alpha \right)}}{8} + \frac{3}{8}$$$$$$\alpha=t$$$에 적용하세요:

$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\int{\sin^{4}{\left(t \right)} d t}}} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\int{\left(- \frac{\cos{\left(2 t \right)}}{2} + \frac{\cos{\left(4 t \right)}}{8} + \frac{3}{8}\right)d t}}}$$

상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$$$$c=\frac{1}{8}$$$$$$f{\left(t \right)} = - 4 \cos{\left(2 t \right)} + \cos{\left(4 t \right)} + 3$$$에 적용하세요:

$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\int{\left(- \frac{\cos{\left(2 t \right)}}{2} + \frac{\cos{\left(4 t \right)}}{8} + \frac{3}{8}\right)d t}}} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - {\color{red}{\left(\frac{\int{\left(- 4 \cos{\left(2 t \right)} + \cos{\left(4 t \right)} + 3\right)d t}}{8}\right)}}$$

각 항별로 적분하십시오:

$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - \frac{{\color{red}{\int{\left(- 4 \cos{\left(2 t \right)} + \cos{\left(4 t \right)} + 3\right)d t}}}}{8} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} - \frac{{\color{red}{\left(\int{3 d t} - \int{4 \cos{\left(2 t \right)} d t} + \int{\cos{\left(4 t \right)} d t}\right)}}}{8}$$

상수 법칙 $$$\int c\, dt = c t$$$$$$c=3$$$에 적용하십시오:

$$\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} + \frac{\int{4 \cos{\left(2 t \right)} d t}}{8} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} - \frac{{\color{red}{\int{3 d t}}}}{8} = \frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4} + \frac{\int{4 \cos{\left(2 t \right)} d t}}{8} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} - \frac{{\color{red}{\left(3 t\right)}}}{8}$$

상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$$$$c=4$$$$$$f{\left(t \right)} = \cos{\left(2 t \right)}$$$에 적용하세요:

$$\frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\int{4 \cos{\left(2 t \right)} d t}}}}{8} = \frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\left(4 \int{\cos{\left(2 t \right)} d t}\right)}}}{8}$$

이미 계산된 적분 $$$\int{\cos{\left(2 t \right)} d t}$$$:

$$\int{\cos{\left(2 t \right)} d t} = \frac{\sin{\left(2 t \right)}}{2}$$

따라서,

$$\frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\int{\cos{\left(2 t \right)} d t}}}}{2} = \frac{t}{8} - \frac{\sin{\left(2 t \right)}}{4} - \frac{\int{\cos{\left(4 t \right)} d t}}{8} + \frac{{\color{red}{\left(\frac{\sin{\left(2 t \right)}}{2}\right)}}}{2}$$

$$$v=4 t$$$라 하자.

그러면 $$$dv=\left(4 t\right)^{\prime }dt = 4 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = \frac{dv}{4}$$$임을 얻습니다.

따라서,

$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(4 t \right)} d t}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{8}$$

상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$$$$c=\frac{1}{4}$$$$$$f{\left(v \right)} = \cos{\left(v \right)}$$$에 적용하세요:

$$\frac{t}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{8} = \frac{t}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}}{8}$$

코사인의 적분은 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$\frac{t}{8} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{32} = \frac{t}{8} - \frac{{\color{red}{\sin{\left(v \right)}}}}{32}$$

다음 $$$v=4 t$$$을 기억하라:

$$\frac{t}{8} - \frac{\sin{\left({\color{red}{v}} \right)}}{32} = \frac{t}{8} - \frac{\sin{\left({\color{red}{\left(4 t\right)}} \right)}}{32}$$

따라서,

$$\int{\left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}$$

적분 상수를 추가하세요:

$$\int{\left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)d t} = \frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}+C$$

정답

$$$\int \left(- \sin^{4}{\left(t \right)} + \sin^{2}{\left(t \right)}\right)\, dt = \left(\frac{t}{8} - \frac{\sin{\left(4 t \right)}}{32}\right) + C$$$A


Please try a new game Rotatly